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Abstract

Feature selection in high-dimensional biological data, where the number of fea-

tures far exceeds the number of samples, has long posed a significant methodological

challenge. This study evaluates two recently developed feature selection methods,

Stabl and Nullstrap, under a simulation framework designed to replicate regression,

classification, and non-linear regression tasks across varying feature dimensions and

noise levels. Our results demonstrate that Nullstrap consistently outperforms Stabl

and other benchmarked methods across all evaluated scenarios. Furthermore, Null-

strap proved significantly faster and more scalable in high-dimensional settings,

underscoring its suitability for large-scale omics data applications. These findings

establish Nullstrap as a robust, accurate, and computationally efficient feature se-

lection tool for modern omics data analysis.

1 Introduction

Feature selection is a critical step in the analysis of high-dimensional biological data, such

as that generated by genomics, transcriptomics, and proteomics studies. Its primary goal

is to identify a subset of relevant features associated with a specific outcome of interest, for

instance, discovering biomarkers for disease status, drug response, or patient prognosis.

However, the high-dimensional setting—where the number of features (p) far exceeds the

number of samples (n)—poses a significant challenge. This ”curse of dimensionality”

often leads to model overfitting, reduced interpretability, and computational inefficiency,

thereby complicating the reliable identification of robust biological signals.
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Traditional feature selection methods can be broadly categorized into three groups: uni-

variate filtering methods (e.g., mutual information, correlation, ANOVA, AUC), embed-

ded methods (e.g., random forest, Lasso), and wrapper methods (e.g., forward selection,

backward elimination) [1]. While these approaches have been widely used in the analysis

of omics data, there is no single method that is universally accepted as the optimal choice

for high-dimensional biological datasets, and the selection of an appropriate method often

depends on the specific characteristics of the data and the analysis goals.

The development of the machine learning feature selection module for our AI-driven

bioinformatics platform, PromptBio, has necessitated a critical evaluation of existing

methods against these practical challenges. Consequently, we defined a set of criteria for

an ideal feature selection method: (1) availability of mature and well-maintained imple-

mentations in common data analysis languages (such as Python and R) to ensure ease of

use and reproducibility; (2) computational efficiency and scalability to handle large-scale

datasets; (3) support for major supervised learning tasks relevant to biological research,

including regression, classification, and survival analysis; (4) interpretability, specifically

the ability to assign meaningful feature scores that reflect the influence of each feature on

the outcome, with a preference for sparse solutions where most features receive a score

of zero, akin to Lasso regularization [2]; (5) minimal reliance on manual hyperparame-

ter tuning, achieved through internal mechanisms or heuristics that automate parameter

optimization and reduce the demand for user expertise; and (6) an automatic and unbi-

ased approach for determining or recommending the optimal number of features to select,

rather than relying on subjective visual inspection or arbitrary thresholds.

Our search for a suitable method led us to two recently developed approaches: Stabl [3]

and Nullstrap [4], which show significant promise in addressing these challenges. Both

approaches are grounded in penalized linear modeling frameworks, such as Lasso and

Elastic Net, and are specifically designed to address the challenge of false discovery rate

(FDR) control through different null data generation strategies. Stabl controls the false

discovery proportion (FDP) by augmenting the original dataset with artificially gener-

ated features, either via random permutation of the original features or through the use

of Model-X (MX) knockoffs [5]. With the integration of noise injection and a data-driven

signal-to-noise threshold, it enables more robust feature selection. Nullstrap generates

synthetic null data by fitting a null model under the global null hypothesis—assuming

that none of the features are associated with the outcome—without modifying the orig-

inal data. In this study, we employ a simple simulation framework to compare their

performance against baselines approaches. A summary comparing the key characteristics

of both methods is provided in Supplementary Table S1. Our goal is to deliver a prac-

tical assessment and actionable guidance for applying Stabl and Nullstrap to large-scale

biological data analysis.
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2 Methods

2.1 Simulation Study

We generated synthetic data to evaluate the performance of feature selection methods.

The simulation framework creates feature matrices with known correlation structures and

target variables with controlled signal-to-noise ratios.

2.1.1 Feature Matrix Generation

Let X ∈ Rn×p be a feature matrix generated from a multivariate normal distribution:

X ∼ N (0,Σ)

where n is the number of samples, p is the number of features, and Σ is a correlation ma-

trix obtained from real biological data (Supplementary Information 1). This correlation

matrix captures the inherent dependency structure present in high-dimensional biological

datasets.

2.1.2 Regression Target Variable Generation

For regression tasks, the target variable yreg is generated using a linear model with additive

noise:

yreg = Xsβ + ϵ

where Xs ∈ Rn×ps represents the subset of signal features (the first ps features), β ∈ Rps

is a coefficient vector with entries sampled uniformly from [−1,−0.5] ∪ [0.5, 1], and ϵ ∼
N (0, σ2) is Gaussian noise with standard deviation σ = α · std(Xsβ). The noise level

parameter α controls the signal-to-noise ratio.

2.1.3 Classification Target Variable Generation

For classification tasks, we first generate the continuous output ycont using the same

linear model as in regression, then transform it to binary labels. The continuous output

is transformed using a logistic function applied to the centered values:

si =
1

1 + e−(yi,cont−µycont )

where µycont is the mean of ycont across all samples, and si represents the transformed

probability score for sample i.

The binary classification labels are determined by applying a threshold τ to these trans-

formed scores. For each simulation run, τ is randomly sampled from a uniform distribu-
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tion τ ∼ Uniform(0.3, 0.7), and the initial binary labels are computed as:

yi =

1 if si > τ

0 otherwise

To simulate imperfect labels, we introduce controlled noise by randomly flipping a subset

of the generated labels. Let N ⊂ {1, 2, . . . , n} be a randomly selected subset of indices

with cardinality |N | = ⌊α · n⌋, where α ∈ [0, 1] is the noise ratio parameter. The

classification labels with noise are then computed as:

ycls =

1− yi if i ∈ N
yi otherwise

To ensure balanced classification datasets, we implement a post-generation quality check

on the final noisy labels. If the resulting ratio of either class (0 or 1) falls outside the range

[0.25, 0.75], the threshold τ is regenerated and the entire classification process (including

noise introduction) is repeated until the class balance requirement is met.

2.1.4 Non-linear Regression Target Variable Generation

For non-linear regression tasks, the target variable ynl is generated using a feedforward

neural network architecture with ReLU activation functions. The network consists of

L hidden layers, where each layer transforms the input through a series of non-linear

operations.

Let h(0) = Xs be the initial input layer containing the signal features, and let W (l) ∈
Rdl−1×dl be the weight matrix for the l-th hidden layer, where dl is the dimension of the

l-th hidden layer. The forward propagation through the network is defined recursively

as:

h(l) = ReLU(W (l)h(l−1)) for l = 1, 2, . . . , L

where the ReLU activation function is defined as ReLU(x) = max(0, x).

The weight matrices W (l) are generated using the same strategy as the coefficient vector

β in the linear regression case, with entries sampled uniformly from [−1,−0.5] ∪ [0.5, 1].

The final output layer produces the continuous target variable:

ynl = W (L+1)h(L)

where W (L+1) ∈ RdL×1 is the output layer weight matrix.

This approach allows us to generate target variables with non-linear dependencies on the

signal features, where the degree of non-linearity can be tuned by adjusting the neural
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network architecture (e.g., number of layers or hidden units).

2.1.5 Simulation Settings

The simulation framework supports various configurations with different sample sizes,

feature dimensions, and noise levels. In our experiments, we focused on scenarios with

n = 300 samples and ps = 10 signal features containing information for target prediction.

For regression tasks, we set the number of features to p ∈ {1000, 3000, 10000} and the

noise ratio to α ∈ {0.2, 0.4, 0.6}. For classification tasks, we used p = 1000 features and

a noise ratio of α ∈ {0.0, 0.05, 0.1}. For non-linear regression tasks, we considered two

neural network architectures: one with a single hidden layer of d1 = 8 units, and another

with two hidden layers, each with d1 = d2 = 8 units, to model varying complexity.

For both classification and non-linear regression tasks, we fixed the number of features at

p = 1000 to simplify the evaluation. The impact of feature dimensionality on performance

was assessed in the regression experiments.

2.2 Benchmarking Methods

Both Stabl and Nullstrap methods were applied to classification and regression tasks—including

both linear and non-linear settings—using their default parameters (Supplementary In-

formation 2). These methods generated feature ranking scores and selected feature sets

for subsequent evaluation.

For baseline comparison, we implemented two widely-used feature selection approaches:

a mutual information-based filtering method and a random forest method. In the mutual

information method, we calculated the mutual information between each feature and the

response variable, resulting in a score for each feature. For the random forest method,

we trained a random forest model and obtained feature importance scores from the fitted

model (Supplementary Information 2). In both cases, these scores were used to rank the

features for subsequent selection. To facilitate a direct and consistent comparison, we

selected the top 10 features from mutual information and random forest methods to form

the baseline feature sets.

2.3 Evaluation Metrics

We evaluate the performance of feature selection methods using two complementary met-

rics: Area Under the Precision-Recall Curve (AUPRC) and F1 score.

AUPRC measures the overall ranking quality of features, where informative features

should be ranked higher than non-informative ones. Given the extreme class imbalance

in our simulation (most features are non-informative), AUPRC is preferred over Area

Under the Receiver Operating Characteristic curve (AUROC) as it focuses specifically
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on positive class performance and is not dominated by the majority negative class.

F1 score provides a balanced measure of precision and recall, evaluating the final feature

set selected after applying a threshold. While AUPRC assesses ranking quality, F1 score

measures the practical utility of the selected feature subset in real-world applications

where a definitive feature set is required.

We also record wall-clock time for the core feature selection procedure to compare com-

putational costs across methods. Given the variability in implementation details (e.g.,

hyperparameter search grids, bootstrap iterations, parallelization strategies), these com-

parisons provide general computational cost estimates for practical usage rather than

comprehensive algorithmic efficiency analysis.

3 Results

Across all simulation scenarios, Nullstrap consistently outperformed Stabl, random for-

est, and mutual information-based feature selection methods. In regression tasks, Null-

strap achieved the highest AUPRC and F1 scores, particularly in settings with low noise

and lower feature dimensionality, where it nearly perfectly identified informative features

(Figure 1). As the number of non-informative features or the noise level increased, the

performance of all methods declined, but Nullstrap maintained a clear advantage over

the alternatives. Stabl generally ranked second, followed by random forest, while mu-

tual information exhibited the weakest performance throughout. We also observed that

as noise increased, Nullstrap’s F1 score declined as expected, while Stabl’s F1 score re-

mained relatively stable. This is likely due to Stabl’s intrinsic procedure for optimizing

the frequency threshold used in feature selection.
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Figure 1: Performance of feature selection methods in simulated linear regres-
sion tasks. Performance is shown as (a) AUPRC and (b) F1 score across simulation
settings with feature dimensions p = 1000, 3000, and 10 000, and noise levels correspond-
ing to α = 0.2 (low), 0.4 (medium), and 0.6 (high).

Similar trends were observed in classification (Figure S2) and non-linear regression tasks

(Figure S3): Nullstrap remained the top-performing method, with Stabl and random

forest trailing behind and mutual information performing the worst. Overall, feature

selection was most effective in linear regression, followed by classification, and was most

challenging in non-linear regression. The performance gap between Nullstrap and Stabl

narrowed as task complexity increased, but Nullstrap consistently provided superior fea-

ture ranking and selection across all evaluated conditions.

In terms of computational cost, Nullstrap was significantly faster than all other methods,

including the univariate mutual information feature ranking approach. In our simula-

tions, the time required by Nullstrap, mutual information, and random forest methods

increased roughly in proportion to the number of features (see Supplementary Table S2).

By contrast, Stabl was not only the most computationally expensive method, but its com-

putation time increased more rapidly than the growth in feature dimensionality, making

it less scalable to high-dimensional datasets.

4 Discussion

This simulation study systematically benchmarked two recently proposed feature selec-

tion methods, Nullstrap and Stabl, against established baselines in high-dimensional,
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biologically realistic scenarios. Our results demonstrate that both Nullstrap and Stabl

outperform traditional approaches such as random forest and mutual information filter-

ing, with Nullstrap consistently achieving the highest accuracy in both feature ranking

and selection. Notably, Nullstrap maintained its superior performance even in challeng-

ing settings characterized by high noise levels, increased dimensionality, and non-linear

relationships between features and outcomes.

A key strength of Nullstrap is its computational efficiency, enabling rapid analysis of

large-scale omics datasets. In contrast, while Stabl is competitive in terms of feature

selection accuracy and offers the advantage of adaptively choosing the frequency threshold

to control the FDR, it exhibited substantially higher computational costs and poorer

scalability as the number of features increased. This difference in computational burden

is particularly relevant for modern biological studies which often involve datasets with

tens of thousands of features or more.

It is important to acknowledge that, although our simulation framework incorporates

realistic aspects of biological data, it does not capture the full complexity of real-world

omics datasets. Both Nullstrap and Stabl rely on penalized linear models as their core

feature selection engine, which aligns closely with the linear and sparse structure of our

simulated data. Future work should explore the performance of these methods in settings

with more complex non-linearities, or alternative data-generating mechanisms to further

assess their generalizability.

In summary, our findings highlight Nullstrap as a robust, accurate, and scalable feature

selection method for high-dimensional biological data. Its strong performance across

a range of simulated scenarios, combined with its computational efficiency, makes it

a practical and reliable tool for researchers seeking to identify informative features in

modern omics analyses.
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Supplementary Information

Supplementary Information 1: Correlation Structures in Simu-

lated Data

To create realistic correlation structures for simulated data, we used gene expression data

from the CPTAC endometrial cancer dataset, specifically from Supplementary Table S2

of [6]. Genes with very low (<0.5) or very high (>5) variance were removed. We then

calculated pairwise correlations among the remaining genes. To reduce redundancy, one

gene from each highly correlated pair (absolute correlation > 0.95) was removed, keeping

the gene with the lower index. The distribution of pairwise correlation coefficients in this

dataset after filtering are shown in Figure S1. For each simulation, we randomly sampled

the required number of features (e.g., p = 1000, 3000, 10 000) from this filtered set to

generate the simulated datasets.

Supplementary Information 2: Method Implementation Details

Implementation details for each feature selection method are provided below. For Stabl

and Nullstrap, we used either default settings or the example code from the respective

package documentation.

• Mutual Information: Feature scores were computed using the mutual info regression

and mutual info classif functions from the sklearn.feature selection Python

module.

• Random Forest: Feature importance was computed using the RandomForestClassifier

and RandomForestRegressor functions from the sklearn.ensemble Python mod-

ule. The following hyperparameters were tuned using 5-fold cross-validation: n estimators

(20, 50, 100, 200), max depth (None, 5, 10), and min samples split (2, 5, 10). The

best parameters were selected and the model was retrained on the entire dataset

before computing feature importances.

• Stabl: For regression, we used Lasso(max iter=int(1e6)) as the base estimator;

for classification, we used LogisticRegression(penalty="l1", max iter=int(1e6),

solver="liblinear"). Stabl was run as Stabl(base estimator=clone(lasso),

lambda grid="auto", verbose=1) with default frequency threshold optimization.

• Nullstrap: For classification, we used fit <- nullstrap filter(X, y, fdr value

= 0.1, best lambda = NULL, B reps = NULL, dist type = "normal", model type

= "glm"); for regression, model type = "linear" was used.
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Supplementary Figures

Figure S1: Distribution of pairwise correlation coefficients in the filtered CP-
TAC endometrial cancer gene expression dataset. The histogram shows the den-
sity of correlation coefficients among all pairs of genes after variance and redundancy
filtering.

Figure S2: Performance of feature selection methods in simulated classifica-
tion tasks. Performance is shown as AUPRC and F1 score for the classification task
with feature dimension p = 1000 and noise levels corresponding to α = 0.0 (low), 0.05
(medium), and 0.1 (high).
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Figure S3: Performance of feature selection methods in simulated non-linear
regression tasks. Performance is shown as AUPRC and F1 score for the non-linear
regression task with feature dimension p = 1000 and neural network architectures with 1
hidden layer (8 units) and 2 hidden layers (8, 8 units).
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Supplementary Tables

Characteristic Stabl Nullstrap

Underlying model Penalized linear model Penalized linear model
Regression support Yes Yes
Classification support Yes Yes
Survival analysis support No Yes
Primary dependency scikit-learn glmnet

Programming language Python R
Open-source availability Stabl Nullstrap
Reference publication Nat. Biotechnol. 2024 arXiv:2501.05012

Table S1: Comparison of Stabl and Nullstrap feature selection methods. Sum-
mary of key characteristics, supported analysis types, software dependencies, program-
ming language, and availability for the Stabl and Nullstrap methods.

Method p = 1000 p = 3000 p = 10 000

Mutual Information 1.96 ± 0.02 5.87 ± 0.05 19.52 ± 0.19
Random Forest 41.03 ± 0.77 122.16 ± 1.90 406.27 ± 7.78
Stabl 92.60 ± 2.13 348.66 ± 29.11 1644.52 ± 151.70
Nullstrap 1.17 ± 0.16 3.08 ± 0.40 8.50 ± 0.75

Table S2: Computation time (in seconds) for feature selection methods across
simulation settings. Mean wall-clock time (± standard deviation) is reported for each
method, averaged over 10 simulation replicates. Results are shown for linear regression
tasks with varying feature dimensions (p).
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