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Abstract

Motivation: Natural language processing (NLP) tasks aim to convert unstructured text data (e.g. articles or dia-
logues) to structured information. In recent years, we have witnessed fundamental advances of NLP technique,
which has been widely used in many applications such as financial text mining, news recommendation and machine
translation. However, its application in the biomedical space remains challenging due to a lack of labeled data, ambi-
guities and inconsistencies of biological terminology. In biomedical marker discovery studies, tools that rely on NLP
models to automatically and accurately extract relations of biomedical entities are valuable as they can provide a
more thorough survey of all available literature, hence providing a less biased result compared to manual curation.
In addition, the fast speed of machine reader helps quickly orient research and development.

Results: To address the aforementioned needs, we developed automatic training data labeling, rule-based biological
terminology cleaning and a more accurate NLP model for binary associative and multi-relation prediction into the
MarkerGenie program. We demonstrated the effectiveness of the proposed methods in identifying relations be-
tween biomedical entities on various benchmark datasets and case studies.

Availability and implementation: MarkerGenie is available at https://www.genegeniedx.com/markergenie/. Data for
model training and evaluation, term lists of biomedical entities, details of the case studies and all trained models are
provided at https://drive.google.com/drive/folders/14RypiIfIr3W_K-mNIAx9BNtObHSZoAyn?usp=sharing.

Contact: zhuzx@szu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Relations of biomedical entities (bioentities) are critical to biomed-
ical studies and are hidden in a large number of biomedical articles.
In this work, the main goal is to rapidly and accurately identify asso-
ciative relations between a pair of biomedical entities present in the
literature. We consider two entities to be associative in a context
when they are described to be correlated directly, causal or non-
causal. Most biomedical entity relations such as a biomarker and a
disease are associative. Determining such a relation is typically an
important first step to guide additional wet-lab or clinical studies to
verify the diagnostic, predictive, prognostic, predisposing and treat-
ment relation. Without being exhaustive, a bioentity may refer to a
disease, a gene, a metabolite or a microbial taxa.

Many biomedical text-mining methods have been used to
identify associations of diseases and biomarkers. These methods can

digest research articles more efficiently and comprehensively com-
pared to human researchers and can help prioritize the targets in
diagnoses and drug target discovery. In the following, we provide a
brief overview of the current status of biomarker relation database
curation and text-mining methods.

Bioentity relation databases are typically manually curated and
serve as the ground truth for the research community. For example,
Ma et al. (2017) manually extracted 292 microbe–microbe, 39 dis-
ease–disease and 483 microbe–disease associations from microbiome-
related articles. Janssens et al. (2018) established a disease–micro-
biome database by querying PUBMED database using criteria
([(’microbiota’ OR ’microbiome) and (’health’ OR ’disease’)] and
[microbiome alterations]). Then, the disease, microbiome terms and
their relations were extracted manually. Noronha et al. (2019) created
a database that relates human metabolism with genetics, microbial
metabolism, nutrition and diseases.
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To automate and expand the scope of entity relation extraction,
a few methods, including PolySearch2 (Liu et al., 2015), BEST (Lee
et al., 2016), GenCLiP 3 (Wang et al., 2020), STRING (Szklarczyk
et al., 2021), IBDDB (Khan et al., 2021) and DrugShot
(Kropiwnicki et al., 2022), have been introduced. With a common
assumption that the strength of entity association is positively corre-
lated with their co-occurring frequency in the same context, these
methods first identified frequently co-occurring entities of interest,
then refined the entity relation with different scoring and filtering
criteria. However, there are some limitations. A pair of entities with
low co-occurring frequency can be reliable but would be missed. For
example, recently discovered relations would have few mentions in
the literature. Meanwhile, high co-occurrence counts can include
many false positives that require ad hoc and complex rules to
eliminate.

These limitations have been addressed by supervised machine
learning (ML)-based methods (Hsieh et al., 2017; Hua and Quan,
2016; Xu et al., 2015). To curate CIViC database (Lever et al.,
2019), published literature was parsed and sentences containing a
pair of target entities were identified via exact string matching. A
support vector machine-based classifier was then trained using 800
labeled sentences. Ahmed et al. (2019) proposed a novel neural net-
work architecture for identifying protein–protein interactions (PPIs)
from biomedical text using a tree long-short-term memory (LSTM)
network with structured attention to traverse the dependency tree of
a sentence through a child sum tree LSTM. Meanwhile, structural
information was learned through a parent selection mechanism by
modeling non-projective dependency trees. The main challenge for
the application of ML methods is the lack of labeled training data.
Although distant supervision (Mintz et al., 2009) can be used to ac-
quire additional training data with positive labels, negative training
data cannot be generated and this method requires a high-quality
knowledge database that is typically hard to curate.

In this article, we treat finding relevant biomedical entities as a
sentence-level binary/multiple relation classification task. During en-
tity extraction, we introduced rule-based strategies to reduce false
positive extractions as the existing bioentity terminologies still con-
tain a large number of ambiguities and sometimes, errors. To ad-
dress the lack of training data and the labor-intensive manual
labeling process, we proposed an automated training data gener-
ation using co-occurrence frequency matrix and demonstrated its
practical use. We then developed a new model, SBGT
(SciBERTþGumbel Tree-GRU), for relation classification that uses
SciBERT (Beltagy et al., 2019) to encode the context features of
words and Gumbel Tree-GRU (Hong et al., 2020) to encode the syn-
tactic structures of sentences.

We provide MarkerGenie as an online text-mining tool. The cur-
rent release includes the following entities: diseases, microbiomes,
genes and metabolites. The corpus currently includes the free-text and
tables of articles in PubMed and PubMed Central. The overview of
MarkerGenie is given in Figure 1 that includes four main components:
user query processing, article retrieving and sentence filtering, model-
based classification and results reporting. The implementation details
of MarkerGenie are provided in Supplementary Section S1.

2 Materials and methods

2.1 SBGT model
In the proposed SBGT model, we used SciBERT (Beltagy et al.,
2019) to extract the contextual features of words given the input
sentence. SciBERT can improve the handling of unseen and rare
words by using subword tokenizer in between words and characters.
It had been experimentally shown to outperform BERT-Base and
Bio-BERT in relation extraction of biomedical text (Beltagy et al.,
2019). Then, we used the Gumbel Tree-GRU (Hong et al., 2020) to
encode the syntactic structure. The encoded vectors were concaten-
ated and fed into a fully connected layer for prediction. As shown in
Figure 1, given a sentence, SciBERT extracts the contextual features
of each word. Each word is encoded as a 1*768 vector. Then
Gumbel Tree-GRU is used to organize those words into a vector to

represent the sentence. Afterward, the vector as well as the context-
ual features of Entity1 and Entity2 are concatenated to indicate their
relation. Finally, a fully connected layer is applied to predict the
probability of the relation falling within each category.

2.2 Unsupervised training data generation for binary

relation classification
To generate the training data, a co-occurrence frequency matrix of
the bioentities from sentences was first constructed from free-text in
PubMed and PubMed Central. We chose entity pairs with the most
co-occurrence counts and used two thresholds, ‘minimum co-
occurrences t1’ and ‘truncating quantity t2’, to generate the positive
data. Particularly, sentences containing a pair of entities co-
occurring � t1 times were considered. At most t2 of these sentences
were retained to prevent the bias toward high frequency entity pairs.
The default values of t1 ¼ 10 and t2 ¼ 50 were empirically set and
used in all current experiments. To generate negative data, sentences
containing entity pairs with the frequency of one in the matrix were
included except the ones that contain a single disease term and bio-
marker term; because we found that the latter was more likely to be
a positive case. Note that the negative sample means no direct asso-
ciation between two biomedical entities in a sentence. Same as co-
occurrence-based methods, some rarer and possibly more relevant
biomedical associations may be missed by ignoring low-occurring
data. However, the samples generated here were used as the labeled
data to train a model rather than used as the final result. The asso-
ciative relation between a pair of bioentities is extracted by the
trained model regardless of their co-occurrence frequency in the ac-
tual prediction stage. An example of the positive and negative data
generation process is given in Figure 2. The complete training data
was generated subject to a 6:4 ratio for positive and negative instan-
ces. The ratio is consistent with the fraction of positive and negative
instances observed in the literature. The generated training data
were further divided by an 8:2 ratio into training and validation sets
for model parameter optimization on F1-score. The model perform-
ance was measured on independent datasets.

2.3 Entity extraction
Entity extraction is a pre-requisite step of relation extraction. The
entities of interest were curated in term lists in advance. Currently,
the following entity term lists have been curated—disease, micro-
biome, metabolite and gene as detailed in Supplementary Section S2.
First, spaCy (Neumann et al., 2019) was used for sentence splitting
and tokenization. Then, similar to CIViCmine, exact string match-
ing was applied to the tokenized sentences to extract entities. To
achieve this, we first constructed a trie on all synonyms and then
located the most extended term in sentences by traversing the trie.
This strategy has a run time complexity of O(n) for a length-n
sentence.

To improve the accuracy of entity recognition, rule-based filter-
ing was further applied. If a disease term had a prefix of a letter fol-
lowed by a dot, like ‘s. pneumonia’, the term was disregarded; we
also removed term with a length less than four characters unless it
was determined to be an abbreviation, conforming the pattern of
‘synonym þ (entity)’.

2.4 Relation extraction from tables
Different from the classification-based relation extraction used for
text, we used rule-based methods on tables. A table was first
extracted and stored as a tuple (caption, table – head, table – body:
list of data rows). The bioentity relations generally appear in two
different patterns in a table as illustrated by the disease–microbiome
relation extraction example: when a disease term and a collective
term of the microbiome (e.g. ‘microbiome’, ‘bacteria’) co-occurred
in the caption of a table and the microbiome terms were present in
the body of the table, all microbiome terms in the table body were
considered to be related to the disease (Fig. 3A). When a disease
term and a specific microbiome term co-occurred in a row or cap-
tion of the table, they were considered to be related (Fig. 3B).
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2.5 Granular relation classification between a disease

and bioentities
When a disease and a bioentity were determined by binary classifi-
cation to be associative, MarkerGenie can further predict them to
be one of the five granular relation types—Predictive, Prognostic,
Diagnostic, Predisposing or Treatment if there is a potential specif-
ic relation between them judged by CIViCmine’s search terms
(Fig. 4). The training sentences of this classification task were first

generated via distant supervision method using knowledge data-
bases of CBD (Zhang et al., 2018), MarkerDB (Wishart et al.,
2021) and Oncomx (Dingerdissen et al., 2020). Then we used a
term list (e.g. ‘risk’ and ‘survival’) provided by CIViCmine to
screen sentences that potentially contain one of the five specific
relations. In addition, we expanded the term list by using pre-
trained word vectors to include synonyms to increase the size of
training data.

Fig. 1. MarkerGenie online workflow. MarkerGenie is a text-mining system for identifying biomarker relations with diseases. Given a query disease term, MarkerGenie first

identifies relevant disease terms through fuzzy matching. Then, it retrieves articles according to the synonyms of the disease, and select the sentences that contain both the dis-

ease and biomarkers through entity extraction. Afterwards, the filtered sentences are classified by NLP models. Finally, the system returns the biomarkers related to the disease

extracted from the literature in detail that including the source sentences, tables and articles. To improve speed, result caching was used

Fig. 2. Example of unsupervised training data generation. The heatmap of the co-occurrence of 20 diseases and 20 microbes in the literature is shown in the left part of this fig-

ure. Gastroenteritis and Vibrio parahaemolyticus co-occur most frequently: more than 400 times, greater than a predefined threshold, so they are considered related and the

corresponding sentences in the articles were selected as positive samples. On the contrary, the low co-occurrence couples, e.g. Liver Cirrhosis and Alkaline xylosoxidans, tend

to be irrelevant and the corresponding sentences formed the negative samples

MarkerGenie 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/2/1/vbac035/6585385 by guest on 25 Septem
ber 2025



3. Results

In this section, we first demonstrate the improved accuracy of SBGT
model by applying it on the curated benchmark datasets that were
used by previous methods—the binary relation classification of PPI
(Pyysalo et al., 2007) and the multi-relation classification of drug–
drug interaction (DDI’13) (Herrero-Zazo et al., 2013). Next, we
demonstrate the validity of automatic training data generation by
applying MarkerGeine to disease–biomarker binary associative rela-
tion classification. This task does not require any prior knowledge
or curated databases. However, when curated databases are avail-
able, MarkerGenie would generate training data via distant supervi-
sion strategy and produce multi-relation classification. This was
demonstrated on disease–gene multi-relation extraction task as car-
ried out in CIViCmine (Lever et al., 2019). Finally, we demonstrate

how MarkerGenie can aid biomarker discovery with a few case
studies.

3.1 Binary relation classification
The SBGT model was first validated on the PPI corpora (Pyysalo
et al., 2007), which was used as a benchmark dataset by prior meth-
ods. The dataset information and hyper-parameters of SBGT are
summarized in Table 1. To ensure the generalization of the learned
model, we replaced the pair of proteins in each sentence with
‘PROTEIN1’ and ‘PROTEIN2’. In addition, all sentences were trun-
cated or padded to a maximum length of 100. The performance of
SBGT was compared with seven other state-of-the-art models—
sdpCNN (Hua and Quan, 2016), sdpLSTM (Xu et al., 2015), Bert
(Devlin et al., 2019), BioBERT (Lee et al., 2020), DRCNN (Zhang

Fig. 3. Illustration of relation extraction from tables. (A) CRC and a collective terms of the microbiome (‘bacterium’) co-occur in the caption of the table, so all microbes in the

table body are considered to be related to CRC. (B) CRC and a specific microbiome term (‘Fusobacterium nucleatum’) co-occur in a row of the table. They are considered as

related

Fig. 4. The workflow of MarkerGenie for classifying the granular relation types between a disease and bio-entities. When a disease and a bio-entity are determined by binary

classification to be associative, MarkerGenie judges if there is a potential specific relation between them by using CIViCmine’s search terms. Then, the trained model is applied

to predict the granular relation types (Predictive, Prognostic, Diagnostic, Predisposing or Treatment) of the filtered sentences
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et al., 2019), Bi-LSTM (Hsieh et al., 2017) and BioKGLM (Fei
et al., 2021). The evaluation scheme and parameters of the com-
pared algorithms were all set per the original papers. The F1-scores
of these methods are given in Table 2, where SBGT achieved 3.2%
improvement over the runner up. Since some of the methods were
evaluated with macro F1-score in the corresponding references, we
also included this metric in Table 2, where SBGT showed consistent
superiority to the compared models, including DCNN (Choi, 2018),
Att-sdpLSTM (Yadav et al., 2019), tLSTM (Ahmed et al., 2019)
and DRCNN.

3.2 Multi-relation classification
We applied SBGT to the DDI’13 dataset (Herrero-Zazo et al., 2013)
where the goal was to determine specific relations (defined as fNA,
ADVICE, EFFECT, MECHANISM, INTg) given two drugs. Like
binary classification, we replaced the pair of drugs in each sentence
with ‘<ent1 >’ and ‘<ent2 >’ and all sentences were truncated or
padded to a maximum length of 100. On this dataset, SBGT were
trained with the hyper-parameters shown in Table 1. SBGT was
compared with the seven other state-of-the-art models, including
SCNN (Zhao et al., 2016), CNN-bioWE (Liu et al., 2016),
MCCNN (Quan et al., 2016), Joint AB-LSTM (Sahu and Anand,
2018), RvNN (Lim et al., 2018), Position-aware LSTM (Zhou et al.,
2018) and BERE (Hong et al., 2020) in terms of precision, recall
and F1-score. As shown in Table 3, SBGT attained the best trade-off
of precision and recall. In terms of F1 score, SBGT obtained a score
of 77.1% that is �3% higher than that of the second best model.

3.3 Disease–biomarker associative binary classification

with automatic training data generation
We selected three major biomarker types—microbiome, metabolite
and gene—to study their associative relations with diseases from
publicly available articles of PubMed and PubMed Central. The
labeled training data for these tasks are scarce or even missing
though some have been manually curated (Lever et al., 2019; Liu
et al., 2015). We introduced an unsupervised method that can auto-
matically generate the labeled training data in Section 2.

Admittedly, the automatic label generation can include many
false positive instances—upon manual inspection, around 15–20%
of the positive samples are incorrectly labeled. Yet, we can obtain a
large amount of data within a few hours’ run time. We have
obtained around 6000 disease–microbiome and 10 000 disease–me-
tabolite or disease–gene training samples. The data of this size
would be more suitable for deep learning strategies compared to the
typical curated data size in the hundreds scale (Lever et al., 2019).
Though trained using noisy data increased the model bias, the over-
all model performance improved along with the size of training sam-
ples on the test data. As the example of disease–microbiome shown
in Figure 5, the F1 value generally increased as more data became
available.

To evaluate the performance of MarkerGenie on the above tasks,
we manually curated 477 disease–microbiome samples and 610
annotated disease–metabolite samples. For disease–gene prediction,
382 labeled disease–gene samples were directly obtained from Liu
et al. (2015). MarkerGenie predicted disease–microbiome, disease–
metabolite and disease–gene relations with precisions of 83.28%,
85.26% and 82.01%, respectively (Fig. 6A, the corresponding F1
scores and precision–recall curves are shown in Fig. 6B and C).
Empirically, around 60–70% instances of disease–biomarker pairs
co-occurring in the same sentence have a true positive relation,
MarkerGenie therefore removed over 10–20% of the false positive
instances. For these three tasks, MarkerGenie recalled 84.92%,
89.73% and 88.43% of the relations, respectively. We note that, the
reported performance from Liu et al. (2015) on this disease–gene re-
lation dataset obtained from the same study had both higher preci-
sion (�5%) and recall (�2%), yet its generalizability cannot be
independently evaluated. Also note that, Liu et al. (2015) used the
rule-based method that factors in the prior knowledge of validated
disease–gene relations, which is generally unknown to the model.

Table 1. PPI and DDI’13 dataset information and hyper-parameters

of SBGT

Dataset PPI DDI’13

No. classes 2 5

No. samples 9666 15 861

Evaluation scheme 10-fold cross-validation 77% training, 23% test

SBGT miniBatch-size 16 32

SBGT learning rate 1e�5 3e�5

SBGT num of epoch 50 10

SBGT optimizer AdamW AdamW

Note: The evaluation schemes were selected to be consistent with the meth-

ods under comparison.

Table 2. Comparison of SBGT and other methods on PPI dataset in

terms of F1 score and macro-F1 score

Method F1 score (%) Method Macro-F1 scores (%)

sdpCNN 75.2 DCNN 74.7

sdpLSTM 77.3 Att-sdpLSTM 81.7

Bert 82.3 tLSTM 89.1

BioBERT 84.6 DRCNN 91.1

DRCNN 86.9 — —

Bi-LSTM 87.2 — —

BioKGLM 89.3 — —

SBGT 92.4 SBGT 94.9

Table 3. Comparison of SBGT and other methods on DDI’13 data-

set in terms of Precision, Recall and F1 score

Method P (%) R (%) F (%)

SCNN 69.1 65.1 67.0

CNN-bioWE 75.7 64.7 69.8

MCCNN 75.9 65.2 70.2

Joint AB-LSTM 73.4 69.6 71.5

RvNN 74.4 69.3 71.7

PM-BLSTM 75.8 70.4 73.0

BERE 76.9 71.3 73.9

SBGT 80.3 74.2 77.1

Fig. 5. An illustration of the impact of automatically acquired training data on

model performance. The SBGT model was trained on different sizes of disease–

microbiome training dataset and F1 scores were obtained on the independent 477

test samples. Each experiment was repeated three times and the F1 score was the

average
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3.4 Granular relation extraction via distant supervision
Following binary associative relation prediction, MarkerGenie can
rely on disease–biomarker relation knowledge-bases to automatical-
ly generate training data via distant supervision, then yield more de-
terministic relation predictions. In this part, the performance of
MarkerGenie was verified with the 250 test samples from Lever
et al. (2019) that contains four granular relation types, Diagnostic,
Predictive, Predisposing and Prognostic between cancers and genes.
MarkerGenie was compared with CIViCmine (Lever et al., 2019) in
terms of precision and recall, where the precision–recall curves of
the two methods are shown in Figure 6D–G. MarkerGenie obtained
better precision and recall than CIViCmine.

In the following, we demonstrate how MarkerGenie can be
applied to biomarker discoveries with different case studies.

3.4.1 Identification of colorectal cancer-related microbes

Colorectal cancer (CRC) is the third most common cancer world-
wide and one of the primary causes of cancer-related deaths (Rawla
et al., 2019). The association between CRC and the human gut
microbiome is a focus of the current CRC research (Abdulla et al.,
2021; Chattopadhyay et al., 2021; Sánchez-Alcoholado et al.,
2020). In this study, we used MarkerGenie to find the microbes
related to CRC from the literature and manually verified the results.

In searching for microbes related to CRC, MarkerGenie returned
a total of 2257 sentences that included 264 microbes. Among these
2257 sentences, 2118 were correctly predicted, whereas 98 were
wrongly predicted and 41 were difficult to judge via manual inspec-
tion. The overall sentence’s binary classification precision is 93.8%.
For microbes, 247 out of 264 microbes are associated with CRC. In
Figure 7, an example list of microbes and the corresponding senten-
ces is shown in A. The top 10 microbes with the highest occurrences
are shown in B, among these, eight of them have been previously
shown to be significantly associated with CRC in the meta-analysis
study (Thomas et al., 2019). The remaining two microbes
‘Helicobacter pylori’ and ‘Human papillomavirus’ also have been
shown to be strongly related to CRC in more recent work (Chao

et al., 2020; Wang et al., 2021). These results should provide a good
reference to researchers studying CRC and the microbiome.

As discussed earlier, upon a positive prediction of binary associa-
tive relation between CRC and a microbe, we can further generate
more deterministic relation classification via distant supervision (see
Section 2.5). Here, MarkerGenie produced 185 predisposing, 181
predictive, 154 prognostic, 67 treatment and 33 diagnostic relations.

3.4.2 Identification of breast cancer-related genes

Identifying relevant genes is valuable for the early diagnosis, preven-
tion and treatment of breast cancer (Kazmi et al., 2022; Schettini
et al., 2021; Zhang et al., 2022). We used MarkerGenie to search and
rank the importance of the genes associated with breast cancer.
Similar to BEST (Lee et al., 2016), we presented the top 10 genes
found in MarkerGenie along with the ones identified by BEST,
Polysearch2 and CIViCmine in Figure 8. Eight of them were identified
in at least one of the other methods and reported to be associated with
breast cancer in CIViC knowledge-base (https://civicdb.org) or
NCBI’s GENE database (https://www.ncbi.nlm.nih.gov/gene/). The
remaining two genes ‘ITK’ and ‘NAC’ were false positives upon in-
spection. Specifically, the term ‘NAC’ refers to a type of therapy for
breast cancer. For ‘ITK’, the term identified in association with breast
cancer is ‘EMT’, which is an alias of ‘ITK’ gene. However, ‘EMT’
refers to ‘epithelial-mesenchymal transition’ that is a process linked to
breast cancer. Both false positives are valid entries in the gene list but
had different meanings in the text. To further improve accuracy,
ambiguities of terms in the list need to be resolved.

3.4.3 Disease–miRNA association inference

The output of MarkerGenie can also be directly used for other appli-
cations such as association prediction. We select the disease–miRNA
association inference as a suitable application as it involves three-
way interactions—disease–disease, disease–miRNA and miRNA–
miRNA. The details of the inference method and experimental
results are provided in Supplementary Section S3. Based on

Fig. 6. Performance of MarkerGenie on disease–biomarker relation identification. (A) Precision and recall of disease–biomarkers’ associative binary classification. (B) F1 scores

of disease–biomarkers’ associative binary classification. (C) Precision-recall curves, due to the high threshold at the beginning, there are few samples marked as positive exam-

ples, so the upper left part of the curve fluctuates greatly. (D–G) Precision-recall curves of MarkerGenie and CIViCmine on four specific relation extraction, i.e. predictive,

prognostic, diagnostic and predisposing
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miRNA–miRNA functional similarity, disease–disease semantic
similarity and the disease–miRNA associations identified by

MarkerGenie, we can infer unknown disease–miRNA associations
as accurately as the methods based on curated databases like
HMDD (Huang et al., 2019). MarkerGenie can serve as a surrogate

for the laboriously curated databases.

4 Conclusions

In this work, we proposed a text-mining system, MarkerGenie, to
identify bioentity relations from texts and tables of publications in

PubMed and PubMed Central. The identification problem was for-
mulated as a relation classification task. A new unsupervised train-
ing data generation method and new classification model SBGT
were introduced and tested with benchmark datasets and real-world
case studies. The experimental results demonstrated the effectiveness
of the system. There are further rooms for improvement, including
cross-sentence relations extraction, improving negative samples se-
lection, and better ways to handle ambiguities of short entity terms
such as gene symbols. It is also favorable to recognize the context
(e.g. conditions of experiments and biology relevance) in which the
biomarkers are identified and to improve the entity extraction with
text-mining methods (e.g. PubTator and NER models).

Fig. 7. Statistics of microbes related to CRC returned by MarkerGenie. (A) Example of microbes and the corresponding sentences. (B) The top 10 microbes returned by

MarkerGenie

Fig. 8. Top 10 genes retrieved with the query ‘Breast cancer’ by different systems
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