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ABSTRACT

Information Extraction (IE) is a fundamental task in Natural Language Processing (NLP) that aims to
automatically identify relevant information from unstructured or semi-structured data. Information
extraction from lengthy research literature, particularly in multi-omics studies, faces significant
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challenges due to their complex narratives and extensive context. To address this, we present a novel
dual–LLM adversarial framework in which one large language model (LLM) performs the extraction
and another provides iterative feedback to refine the results. This process systematically reduces
errors, enhances consistency across heterogeneous data sources, and converges toward more accurate
outputs. We evaluated our approach against manual and single-LLM extraction, using LLMs as
evaluators. Experimental results show that our adversarial framework outperforms these baselines,
highlighting its effectiveness for extracting structured information from lengthy scientific texts.

Keywords Information Extraction · Natural Language Processing · Large Language Model · Multi-omics · Adversarial
Framework

1 Introduction

The rapid growth of scientific publications has created an unprecedented wealth of knowledge, yet it also poses a
significant challenge: how to efficiently identify, organize, and reuse critical information within massive volumes of text.
Extracting such information from scientific literature is essential for accelerating discoveries, supporting reproducibility,
and enabling downstream computational analyses.

Manual processing, however, is far too slow and resource-intensive to keep pace with the exponential expansion of
the literature. Information Extraction (IE) techniques provide a potential solution by transforming unstructured text
into structured, machine-readable knowledge. Nevertheless, traditional IE methods face several limitations: they often
require large amounts of labeled training data, struggle with the long-range dependencies commonly found in scientific
text, and lack the flexibility to generate outputs conforming to domain-specific structured schemas.

Recent advances in large language models (LLMs) offer new opportunities to overcome these barriers. LLMs excel at
processing extended contexts and bring in domain knowledge from large-scale pretraining, making them promising for
scientific IE tasks. Yet, obtaining high-quality results from LLMs in a single pass remains challenging. Issues such as
incomplete coverage, inconsistency across outputs, and deviations from desired annotation formats continue to limit
their reliability in practice.

To address these challenges, we propose a dual-LLM adversarial framework for scientific information extraction. In
this framework, an Extractor LLM first produces structured outputs based on a domain-specific schema, while a Verifier
LLM provides adversarial feedback to detect errors, omissions, and inconsistencies. Through iterative refinement, the
two LLMs progressively improve the accuracy and consistency of the extracted information and its format alignment,
enabling enhanced extractions without human intervention.

We evaluate our framework on multi-omics research literature, a domain characterized by complex data types and
intricate semantic relationships. The results demonstrate that our approach significantly outperforms manual and
single-LLM extraction, achieving higher accuracy and robustness in structured scientific information extraction. The
innovations of our work are as follows.

• Adversarial Dual-LLM Framework – We introduce the first dual-LLM adversarial framework for scientific
information extraction, where an Extractor LLM generates schema-guided extractions, and a Verifier LLM
provides adversarial feedback. This closed-loop interaction enables automated self-correction without human
intervention.

• IE Schema for Multi-Omics Studies: A customized schema that captures key elements-data, analyses and
results-along with their interconnections.

• Multi-LLM-Based Scoring – A novel integration of multiple LLMs for scoring, providing a more comprehen-
sive quality assessment.

• Empirical Validation with Multi-Omics Literature - Through extensive experiments, we show that our frame-
work substantially outperforms manual and single-LLM extraction, demonstrating its effectiveness and
scalability for processing complex scientific literature.

2 Related Work

IE has long been a central area of research in Natural Language Processing (NLP). Early efforts relied primarily
on rule-based and statistical methods, such as BioIE Divoli and Attwood [2005] and PubTator Wei et al. [2024], to
extract entities, relations, and events from structured and unstructured texts. While effective in specific domains, these
approaches suffered from limited generalizability and required extensive domain expertise to manually craft rules.
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The advent of deep learning transformed IE research. Sequence labeling models based on Bi-LSTM combined
with Conditional Random Fields became the standard approach for tasks like named entity recognition and relation
extraction Huang et al. [2015]Lample et al. [2016] Ma and Hovy [2016]. The introduction of transformer-based models,
particularly BERT and its domain-specific variants such as SciBERT Beltagy et al. [2019] and BioBERT Lee et al.
[2020], further advanced the state of the art in biomedical IE. These models improved contextual understanding and
overall accuracy; however, extracting information from lengthy research papers remains a challenge due to complex
discourse structure and long-range dependencies.

LLMs have further revolutionized IE by enabling longer context handling, integrating background knowledge, and
performing extraction with minimal supervision Abu-Jeyyab et al. [2023]AI4Science and Quantum [2023]. GPT-based
models and instruction-tuned variants have demonstrated remarkable performance in zero-shot and few-shot IE scenarios
Hellberg [2023]. These models offer remarkable flexibility but often face challenges in consistency, factuality, and
handling lengthy or multi-document contexts-common characteristics of multi-omics research literature. Several studies
have attempted to address these limitations by using chain-of-thought prompting Wei et al. [2022]Diao et al. [2023] or
integrating feedback mechanisms Yuksekgonul et al. [2025]. Automatic CoT generation, exemplified by Auto-CoT
Zhang et al. [2022], matches the effectiveness of manually crafted prompts, while recent methods such as CoTGenius
Cheng et al. [2024], which employs evolutionary strategies to generate more diverse, verifiable reasoning chains, leading
to improved robustness and accuracy. Yet, comprehensive solutions for high-quality information extraction from lengthy
scientific texts remain elusive.

Adversarial learning has also been successfully applied to various NLP tasks to improve model robustness and
performance Li et al. [2017]Nie et al. [2019]. Generative adversarial networks (GANs) Goodfellow et al. [2014] have
been adapted for text generation and classification tasks, demonstrating improved quality and diversity. Multi-agent
systems represent another promising direction for complex NLP tasks. Recent work Du et al. [2023] has explored
collaborative frameworks where multiple models work together to solve challenging problems.

Our study advances information extraction from scientific literature by introducing a dual-LLM adversarial framework.
Unlike prior works that primarily benchmark LLM performance or rely on single-pass prompting Chen et al. [2025], our
framework enables iterative refinement through an Extractor–Verifier interaction, thereby reducing errors and enhancing
robustness. This design directly addresses the challenges of long-form scientific IE, where extended reasoning and
domain precision are essential. Furthermore, while existing approaches often depend on string-matching metrics or
manual evaluation Dagdelen et al. [2024], we propose a multi-LLM evaluator to capture contextual fidelity more
effectively. Collectively, these contributions differentiate our work from prior efforts and underscore its novelty in
tackling the pressing problem of reliable, high-quality information extraction from complex scientific texts.

3 Methodology

In this work, we introduce an adversarial dual–LLM framework designed to enhance the accuracy of information
extraction from multi-omics literature. Traditional approaches are constrained by limited context and insufficient
domain knowledge, while direct application of large language models fails to yield satisfactory results. Figure 1 shows
the overall structure. Our method leverages two complementary LLMs: one dedicated to generating and refining
extractions, and the other acting as a feedback model to evaluate their quality and provide targeted refinement guidance.
Through iterative interactions, the framework progressively reduces errors and converges toward more accurate results.
This section details the design principles, annotation schema, and iterative process underlying our proposed framework.

3.1 Extraction Rule Definition

In this paper, we have established extraction guidelines specifically for multi-omics research literature. The extraction
guidelines consist of three primary components: data, analyses, and results. This tripartite structure is designed
to capture the essential elements of multi-omics research. Specifically, the "data" component ensures that all used
experimental data are accurately documented. The "analysis" section outlines the methodologies employed, enabling
researchers to understand the analytical processes involved. Lastly, the "results" component emphasizes the importance
of clearly presenting findings.

Definition of Data. In multi-omics research, data encompasses all forms of input information used in analyses and can
be broadly classified into two primary categories:

(1) Raw data: This includes unprocessed information collected directly from experimental platforms, such as:

• Sequencing reads obtained through RNA-seq, DNA-seq, or other next-generation sequencing technologies.
• Unprocessed mass spectrometry outputs used for analyzing protein composition.
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Figure 1: The overall structure of the dual-LLM adversarial frame

(2) Processed data: This refers to data that have been subjected to computational processing, including:

• Normalized gene expression levels such as Transcripts.

• Gene mutation profiles derived from variant calling pipelines that identify genetic variants.

• Quantified protein abundance levels resulting from mass spectrometry or various proteomic techniques.

Definition of Analysis. Analysis involves a suite of computational and statistical methodologies that aims to uncover
biological insights from experimental data. This process consists of several key stages:

(1) Data preprocessing and transformation: This initial phase transforms raw experimental data-such as RNA-seq reads,
genomic variant calls, or protein quantification measurements—into interpretable formats. The processed outputs,
including quantifiable gene expression levels, detailed mutation profiles, and protein abundance metrics, form the
foundation for subsequent analyses.

(2) Bioinformatics analysis methods: This segment employs various techniques to elucidate the biological significance
of the processed data. Key methods include:

• Differential gene expression analysis: Identifying genes with statistically significant changes in expression
levels under varying conditions.

• Gene set enrichment analysis (GSEA): Detecting pathways or gene sets that are enriched in specific biological
contexts, providing insights into relevant biological processes.

• Statistical modeling: Applying statistical techniques to interpret biological implications and relationships
within the data.

(3) Machine Learning Analysis Methods: This component leverages machine learning algorithms to model and predict
biological outcomes. Techniques employed in this phase include:

• Classification analysis: Building models to classify samples into distinct groups, such as disease versus control.

• Regression analysis: Modeling continuous outcomes, such as drug response level.

• Survival analysis: Predicting time-to-event outcomes, such as patient survival.

Definition of Result. The results represent the outputs generated from the analyses, organized into two main categories:

(1) Bioinformatics analysis outputs: This category includes the identification of differential biological entities, such as
genes, cells, and pathways, along with statistical and computational metrics that quantify their significance. Metrics
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such as p-value, fold change, and enrichment score collectively indicate the magnitude and relevance of observed
biological differences or relationships.

(2) Machine learning performance metrics and features: This section pertains to the evaluation of machine learning
models applied to predict biological outcomes. Key performance indicators, including Area Under the Curve (AUC),
F1 score, sensitivity, and specificity, are reported to assess model effectiveness. Additionally, the features used in
modeling, such as genes, proteins, and other biomarkers-are provided to facilitate interpretation and understanding of
the underlying biological processes.

3.2 IE Format

The IE format is designed to systematically capture the essential elements of multi-omics research—data, analyses,
and results—by explicitly linking each dataset to the specific analyses it informs and the results they generate. This
ensures these components are treated as interconnected rather than isolated. Below is the detailed description of each
component:

Data Format: <data_id, omics_type, data_link, data_format, data_source>

• data_id: Unique identifier for the data.
• omics_type: Type of omics data, including: transcriptomics, genomics, proteomics, or other applicable

categories.
• data_link (optional): URL or reference link for online dataset access.
• data_format: File format specification, including fastq, bam, maf, vcf, txt, csv, tsv, or other applicable formats.
• data_source (optional): The origin or repository from which the data was obtained.

"data": [
{

"id": "<data_id>",
"omics_type": "<omics_type>",
"link": "<data_link>",
"format": "<data_format>",
"source": "<data\_source>"

}
]

Analysis Format: <analysis_id, analysis_type, analysis_data, training_set, test_set, label>

• analysis_id: Unique identifier for the conducted analysis.
• analysis_type: Type of performed analysis, including: RNA-seq, variant calling, protein quantification,

differential analysis, single cell clustering, classification analysis, regression analysis, survival analysis, or
other applicable methods.

• analysis_data: List of data_id entries utilized in the analysis.
• training_set (optional): List of data_id entries comprising the training dataset for machine learning analyses.
• test_set (optional): List of data_id entries comprising the test set for machine learning analyses.
• label (optional): Dictionary containing label information utilized in the analysis.

"analyses": [
{

"id": "<analysis_id>",
"analysis_type": "<analysis_type>",
"analysis_data": ["<data_id_1>", "<data_id_2>"],
"training_set": None,
"test_set": None,
"label": {
"<label_name>": ["<group_name_1>", "<group_name_2>"]

}
}

]
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Result Format: <analysis_id, metric, performance, biomarkers>

• analysis_id: Identifier for the analysis corresponding to which the results were obtained.

• metric: Evaluation metric for the results, including: p-value, fold change, AUC, F1 score, or other applicable
measures.

• performance: Overall performance assessment or a list of performance metrics for each biomarker, measured
using the above metric.

• biomarkers: (List) List of the identified biomarkers (e.g., genes, proteins) from the analysis.

"results": [
{

"corresponding_analysis_id": "<analysis_id>",
"metrics": "<metric>",
"performance": "<performance>",
"biomarkers": ["<biomarker_1>", "<biomarker_2>"]

}
]

3.3 Structured Prompting

We designed a structured prompting approach to enhance extraction accuracy by defining clear formats and requirements,
reducing errors caused by ambiguity. This method breaks down complex tasks into distinct parts, allowing the model to
grasp key points and understand instructions more quickly. Information is divided into sections such as ’data,’ ’analyses,’
and ’results,’ aligning with the annotation definition. Structured prompting ensures that the model captures critical
information, providing a comprehensive understanding of the literature.

3.4 Dual-LLM Adversarial Framework

We introduce a dual-LLM adversarial framework for information extraction from multi-omics research literature,
designed to enhance content accuracy and format consistency across heterogeneous biomedical sources. The framework
consists of two complementary components: an Extractor LLM, which extracts information according to a domain-
specific multi-omics schema, and a Verifier LLM, which iteratively evaluates the extractions to detect errors and missing
information. Through an adversarial feedback loop, the Verifier guides the Extractor to refine outputs progressively,
yielding high-fidelity results that capture complex information from multi-omics research.

3.5 Adversarial Iteration

The adversarial iteration process is central to the proposed framework, enabling systematic refinement of extractions
through structured interaction between two complementary large language models. Initially, the Extractor LLM
generates preliminary outputs directly from the literature. However, due to the inherent ambiguity and complexity of
multi-omics research, the initial outputs are often susceptible to content errors, redundancy, and the omission of subtle
contextual cues.

To address this limitation, the Verifier LLM generates detailed feedback in the subsequent step. It critically evaluates
the Extractor’s output by identifying inconsistencies with the domain schema, highlighting errors, and detecting gaps
where essential information is missing. Beyond error detection, it provides targeted refinements, offering explicit
guidance for improving extracted data, analyses and results, clarifying their interconnections, and ensuring alignment
with domain-specific conventions.

The Extractor then incorporates this feedback to refine its outputs. Through this iterative refinement, the adversarial
loop systematically reduces both content and structural errors, while enhancing the robustness of extracted information
across heterogeneous biomedical sources.

3.6 Evaluation

To assess the extracted results automatically, we adopt a multi-LLM–based evaluation protocol. Specifically, multiple
LLMs are provided with both the extracted outputs and the ground truth, are instructed to assign two types of scores: a
content accuracy score (0-100) and a format score (0-100), reflecting the consistency between the results and the ground
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truth in terms of both content and presentation. The final evaluation score is calculated as the average of all evaluators’
combined content and format scores.

When selecting and configuring LLMs for scoring, the following criteria are applied:

• Correct results should receive high scores.

• Incorrect results should receive low scores.

• Multiple evaluations of the same result should yield consistent scores.

• Correct results presented in different orders should receive the same score.

4 Experiments

We downloaded 42 multi-omics research papers on different diseases, each ranging from 37 to 48 pages to ensure
diversity and representativeness. Each paper was annotated by two independent bioinformatics researchers according to
the standards we set and verified by a third reviewer. These annotations serve as the ground truth. Half of them were
used as a validation set for refining prompts and tuning parameters such as the choice of LLMs, while the remaining
papers were reserved as a test set for performance evaluation and comparison.

4.1 LLM Evaluator

Qwen3-32B, Llama3.3-49B, GPT-4.1, GPT-4o, and GPT-o3—representing both open-source and commercial families
of state-of-the-art LLMs—were initially selected as candidate evaluators. These candidates were tested against three
ground-truth variants—original, corrupted, and reordered—to assess their adherence to the four evaluation criteria
described above.

As shown in Table 1, most candidate models performed well in distinguishing correct from incorrect outputs, reliably
assigning high scores to correct annotations and low scores to corrupted ones. However, further stress-testing revealed
key limitations. In particular, Llama3.3-49B did not perform satisfactorily under the Order Invariance setting, producing
inconsistent scores when the same set of annotations was presented in different orders. This indicates that Llama3.3-49B
does not fully meet the robustness requirements for serving as a reliable evaluator.

Similarly, the GPT family showed instability across repeated evaluations: despite identical seeds and temperatures, the
same annotation often received noticeably different scores, compromising reproducibility.

In contrast, Qwen3-32B consistently satisfied all evaluation criteria, demonstrating both stability and robustness across
original, corrupted, and reordered conditions. Therefore, Qwen3-32B was ultimately chosen as the sole evaluator for
our experiments.

Table 1: Performance of different LLM evaluators under four selection criteria
Evaluator Correct Results Incorrect Results Consistency Order Invariance
Qwen3-32B ✓ ✓ ✓ ✓
Llama3.3-49B ✓ ✓ ✓ ×
GPT series (GPT-4.1, GPT-4o,GPT-o3) ✓ ✓ × ×

4.2 Single-LLM Extraction (Non-Adversarial)

We first establish a baseline by evaluating single LLMs in a one-pass information extraction setting on the validation
set, where each model is prompted with schema-specific instructions without iterative refinement. The results are
summarized in Table 2. Qwen3-32B achieved the best overall performance with an evaluation score of 52.5, closely
followed by Qwen2.5-32B (51.18), demonstrating that larger Qwen models are relatively more robust in information
extraction from lengthy text. Llama3-49B and GPT-4o reached moderate scores around 47, while Gemma3-27B and
Mistral-Small3.2-24B performed less competitively, with evaluation scores dropping to 46.22 and 38.82, respectively.
These findings highlight that the effectiveness of single-pass prompting is highly influenced by the choice of LLM, with
considerable performance gaps observed across different models. Moreover, even the strongest single-LLM baselines
show limitations, motivating the exploration of dual-LLM adversarial frameworks for more reliable information
extraction.
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Table 2: Performance of different single LLMs on the validation set
LLM Evaluation Score

Qwen3-32B 65.06
Qwen2.5-32B 60.43
Llama3-49B 58.06
Gemma3-27B 59.21
Mistral-Small3.2-24B 47.68
GPT-4o 57.62

Table 3: Performance of different Extractor–Verifier pairings on the validation set
Extractor LLM Verifier LLM Evaluation Score

Qwen3-32B-no-thinking Qwen3-32B-no-thinking 70.81
Qwen3-32B-no-thinking Qwen3-32B-thinking 66.17
Qwen3-32B-thinking Qwen3-32B-thinking 67.17
Qwen3-32B-thinking Qwen3-32B-no-thinking 66.49
Llama-3.3-nemotron-49b-super-v1-no-thinking Llama-3.3-nemotron-49b-super-v1-no-thinking 62.24
Llama-3.3-nemotron-49b-super-v1-no-thinking Llama-3.3-nemotron-49b-super-v1-thinking 61.02
Llama-3.3-nemotron-49b-super-v1-thinking Llama-3.3-nemotron-49b-super-v1-thinking 62.97
Llama-3.3-nemotron-49b-super-v1-thinking Llama-3.3-nemotron-49b-super-v1-no-thinking 65.16
GPT-4o GPT-4o 69.98

4.3 Dual-LLM Adversarial (Proposed)

Our method introduces an adversarial loop between an Extractor LLM and a Verifier LLM. The Extractor produces
initial schema-based outputs, while the Verifier identifies errors, inconsistencies, and omissions. Table 3 reports the
performance of different Extractor–Verifier pairings over two iterations on the validation set.

Within the Qwen3-32B family, evaluation scores are generally high, ranging from 66.17 to 70.81. The best result (70.81)
is obtained when both the Extractor and Verifier are configured without “thinking,” whereas introducing a “thinking”
Verifier tends to reduce performance. For the Llama-3.3-nemotron models, performance is lower overall, with scores
between 61.02 and 65.16, but still shows moderate variation depending on the pairing. GPT-4o, when used as both
Extractor and Verifier, also performs strongly, achieving 69.98, comparable to the best Qwen results.

These findings demonstrate that the choice of Extractor–Verifier combination has a measurable impact on information
extraction quality. In particular, while Qwen3-32B models exhibit the highest overall scores, Llama-based models
lag behind, and GPT-4o achieves competitive performance. This provides clear evidence that pairing strategy plays a
critical role in optimizing the dual-LLM adversarial framework.

Figures 2 present the score distributions when using Qwen3-32B-no-thinking as both Extractor and Verifier, evaluated
by Qwen3-32B across four dimensions: data, analysis, result, and average score. The evaluator reveals a consistent
pattern: the highest scores appear in the data dimension, moderate scores in analysis, and the lowest scores in results.
This trend is intuitive—multi-omics research papers typically present the data section in a clear and structured manner,
whereas results are more complex and dispersed across text, tables, and figures, with analyses falling in between.

Effect of Iteration Rounds. We further examined the impact of the number of adversarial rounds on performance, using
Owen3-32B-thinking as the Extractor and Qwen3-32B-no-thinking as the Verifier. As shown in Figure 3, the system
achieves its best results at the second iteration, where both content accuracy and structural consistency reach their peak.
This indicates that the Verifier LLM provides the most effective corrections during the early refinement stage, resolving
major errors and structural inconsistencies in just a few rounds. Beyond the second iteration, however, improvements
diminish, and in some cases performance slightly decreases due to overcorrection or unnecessary modifications. After
approximately ten iterations, results converge, with only marginal gains observed in subsequent rounds. This suggests
that the adversarial framework effectively resolves most content errors, omissions, and structural inconsistencies within
the first ten iterations, while further refinement primarily introduces negligible adjustments. Figure 4 illustrates the
score changes of each paper before and after adversarial refinement.

Consequently, two iterations represent the optimal balance between performance and efficiency, delivering better results
without incurring additional computational cost or risking instability from excessive feedback.
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Figure 2: Score distribution of Qwen3-32B evaluator

Figure 3: Evaluation score dynamics across adversarial refinement rounds

4.4 Comparative Experiments

To assess the effectiveness of our framework, we compare it against both manual single-LLM extraction on the test
set of 21 papers. Based on the validation set experiments, we selected Qwen3-32B as the representative single-LLM
baseline due to its consistently superior performance among tested models. For the adversarial setting, we adopted
the Qwen3-32B-no-thinking - Qwen3-32B-no-thinking pairing, which yielded the strongest results during validation,
thereby serving as the dual-LLM configuration for comparison.

Manual Extraction. Domain experts in bioinformatics manually extracted a subset of the literature according to the
multi-omics IE schema. To establish a manual performance benchmark, we recruited seven experts with bioinformatics
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Figure 4: Evaluation score variations of each paper before and after adversarial refinement

Table 4: Evaluation score comparison between manual extraction, single-LLM and dual-LLM adversarial on the test set

Manual Extraction Single-LLM Dual-LLM

Data 57.43 76.29 75.1
Analyses 42.1 47.05 64.9
Results 35.13 46.93 49.8
Average 44.89 56.76 63.27

backgrounds to manually annotate benchmark literature, with each expert randomly assigned three different papers. As
a result, each paper received IE from a single experts.

Table 4 reports the comparative performance of manual extraction, the single-LLM baseline, and the dual-LLM
adversarial framework on the held-out test set. Manual extraction yields the lowest overall score, highlighting the
difficulty of consistently capturing complete and well-structured information from lengthy multi-omics texts. A single
LLM substantially outperforms manual extraction (56.76 vs. 44.89), demonstrating the stability of large language models
in schema-guided extraction. Notably, the dual-LLM adversarial framework achieves the best overall performance,
exceeding the single-LLM baseline by approximately 6.5 points.

A breakdown across dimensions reveals that the improvement is not uniform. In the Data dimension, both the single
and dual models achieve high scores (76.29 and 75.1, respectively), suggesting that factual data extraction is relatively
straightforward and leaves limited room for adversarial refinement. In contrast, the Analyses dimension exhibits the
largest margin of improvement: the dual model reaches 64.9, significantly higher than both the single model and manual
extraction. This indicates that the adversarial interaction is particularly effective in capturing methodological details and
logical reasoning steps, which are prone to errors and omissions in single-pass extraction. For the Results dimension,
the dual framework delivers only modest gains over the single model (49.8 vs. 46.93), reflecting the inherent complexity
of results sections, where information is often fragmented across prose, tables, and figures.

Overall, these findings confirm that the proposed adversarial framework provides substantial benefits over both manual
and single-model baselines, especially for analysis-oriented content, while also exposing persistent challenges in
extracting highly dispersed and structurally complex result information..

5 Discussion

In this work, we develop a novel dual-LLM Adversarial Framework for information extraction, applied to multi-omics
research literature to capture experimental data, analytical methods, results, and their complex interconnections. To
evaluate extraction quality, we employ Qwen3-32B as the sole evaluator, which scores outputs on both content accuracy
and format consistency against ground truth. The framework is benchmarked on 21 multi-omics papers, comparing
its performance with manual and single-LLM extraction. Through iterative adversarial interaction, the framework
progressively refines its outputs, achieving superior performance relative to both manual and single-LLM approaches.
These results highlight the framework’s effectiveness for extracting structured information from lengthy scientific texts.

An analysis of performance trends across adversarial refinement rounds reveals marked improvements during the first
two iterations, followed by a slight decline and eventual convergence within ten iterations. This decline can be attributed
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to overcorrection and unnecessary modifications, suggesting that the adversarial process requires careful calibration
to avoid diminishing returns. This finding provides valuable insights for optimizing iterative refinement strategies in
dual-LLM architectures.

Despite outperforming manual and single-LLM extraction, our framework exhibits a measurable gap compared to
ground truth, indicating that the Verifier LLM cannot fully identify all errors, omissions, and format inconsistencies
produced by the Extractor LLM. This limitation suggests opportunities for enhancing the verification component
through more sophisticated error detection mechanisms.

Another limitation is the relatively small scale of our evaluation, which involved only 21 multi-omics papers. This
constrained sample size may limit the generalizability of our findings. Future work should assess the framework on
larger corpora encompassing lengthier texts and diverse research domains.

Finally, while this study employs Qwen3-32B as the sole evaluator, relying on a single model may introduce bias
or blind spots. In particular, in the test set experiments we used Qwen3-32B for the single-LLM baseline and the
Qwen3-32B-no-thinking - Qwen3-32B-no-thinking configuration for the dual-LLM setting. Since Qwen3-32B also
serves as the evaluation model, it is possible that the evaluator exhibits a preference toward outputs generated by
models from the same family, leading to systematically higher scores. This potential bias underscores the importance of
diversifying evaluators. Future work will therefore extend the evaluation strategy to incorporate multiple heterogeneous
LLM-based evaluators, complementing the limitations of any single model and enhancing the robustness and fairness of
performance assessment.

6 Conclusion

In this study, we present the first attempt to extract multi-omics information in a structured data–analysis–result manner,
enabling a more systematic representation of scientific knowledge. Our experiments demonstrate that the adversarial
framework, which combines extractor and verifier models, consistently outperforms both single-model and manual
labeling, achieving higher accuracy and robustness. Importantly, this framework effectively mitigates inconsistency and
schema deviation that often arise in single-pass LLM extraction, thereby improving reliability when processing complex
multi-section scientific texts. Furthermore, we introduce an evaluation paradigm based on LLM evaluator, allowing
for more nuanced and context-aware assessments beyond traditional string-matching metrics. Together, these findings
highlight the promise of adversarial LLM frameworks as a scalable and accurate solution for IE from biomedical
literature.
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