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Abstract

Motivation: The associations between biomarkers and human diseases play a key role in understanding complex pathology and
developing targeted therapies. Wet lab experiments for biomarker discovery are costly, laborious and time-consuming. Computational
prediction methods can be used to greatly expedite the identification of candidate biomarkers. Results: Here, we present a novel
computational model named GTGenie for predicting the biomarker–disease associations based on graph and text features. In GTGenie,
a graph attention network is utilized to characterize diverse similarities of biomarkers and diseases from heterogeneous information
resources. Meanwhile, a pretrained BERT-based model is applied to learn the text-based representation of biomarker–disease relation
from biomedical literature. The captured graph and text features are then integrated in a bimodal fusion network to model the hybrid
entity representation. Finally, inductive matrix completion is adopted to infer the missing entries for reconstructing relation matrix,
with which the unknown biomarker–disease associations are predicted. Experimental results on HMDD, HMDAD and LncRNADisease
data sets showed that GTGenie can obtain competitive prediction performance with other state-of-the-art methods. Availability: The
source code of GTGenie and the test data are available at: https://github.com/Wolverinerine/GTGenie.

Keywords: miRNA–disease associations, microbe–disease associations, lncRNA–disease associations, graph attention network, text-
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Introduction
Biomarkers play a vital role in disease detection and
the follow-up care [1]. Many diseases are signified by
the dysregulation of complex functional mechanisms
involving multiple biomarkers at genetic, genomic and
microbial levels. Identifying biomarker–disease associ-
ations is of great values for understanding the patho-
genesis of diseases. Since the conventional laboratory
validation approach is labor-intensive, expensive and
time-consuming, various computational methods have
been developed to greatly expedite the identification of
candidate biomarkers. For simplicity, we use the term
biomarker as a reference to either the ones that have
been verified or the candidates that we are trying to
infer.

Generally, the existing computational methods for
the prediction of biomarker–disease associations can
be categorized into network propagation and machine-
learning-based methods. Network-propagation-based
methods construct networks with diseases and biomark-
ers being nodes and their similarities or interactions
being edges, such that the network topology can be
utilized to propagate an arbitrary node to its neighbors
through the updated edge scores in the network.
The final edge scores reflect the credibility of the
corresponding associations. For example, Mugunga et
al. [2] constructed the disease similarity and microRNA
(miRNA) similarity as the edges in heterogeneous
networks and employed random walk to predict the
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latent associations between miRNAs and diseases.
Sumathipala et al. [3] integrated the known long non-
coding (lncRNA)–protein, protein–protein and protein–
disease associations into a multilevel heterogeneous
network, and inferred the lncRNA–disease associations
using random walk. Random walk with restarting was
also used to select the reliable negative microbe–
disease associations by positive-unlabeled learning in
[4]. Rashmi and Rangarajan [5] considered all disease–
disease and miRNA–miRNA similarities together with
local edges among nodes to predict the miRNA–disease
associations via random walk with restarting. Liu et al.
[6] fused multiple data sources including gene–gene,
miRNA–gene, miRNA–lncRNA and lncRNA–lncRNA
associations to calculate the miRNA similarity matrix.
Afterward, they used the heterogeneous networks
composed of the miRNA and disease similarity matrices
to infer the miRNA–disease associations via random
walk. Zhang et al. [7] adopted the KATZ index [8]
to identify the miRNA–disease associations based on
the meta-path method. Network propagation methods
have achieved great accomplishments, yet they are
incompetent to capture complex interaction patterns
due to the use of simple linear network architecture.
Machine-learning-based methods can alleviate this
problem by adopting nonlinear classifier and estimating
the probability score for each candidate association.
For instance, Lan et al. [9] combined multiple biological
similarities to predict lncRNA–disease associations via
the bagging support vector machines. Le et al. [10]
predicted miRNA–disease associations based on random
forest and ensemble learning technique. Guo et al.
[11] adopted the rotation forest algorithm to perform
nonlinear feature transformation for the prediction
of lncRNA–disease associations. Wang et al. [12] used
Word2vec based embedding [13] to encode miRNA
sequences and adopted logistic model tree classifier
with biological similarities to predict the latent miRNA–
disease associations. Uthayopas et al. [14] employed
an extreme gradient boosting classifier to improve the
miRNA–disease associations prediction by introducing
target and symptom information.

More recently, deep learning techniques have emerged
as the new solution for the prediction of biomarker–
disease associations and achieved promising results
especially on biological big-data. Deep learning based
methods use deep neural networks to extract hierar-
chical feature representation from large-scale biological
data. For example, Zeng et al. [15] constructed heteroge-
neous networks by aggregating the neighbor information
in neural networks for miRNA–disease association
prediction. Dong and Khosla [16] proposed a multitask
graph convolutional learning framework for predicting
miRNA–disease associations based on heterogeneous
networks. Deepthi and Jereesh [17] employed an auto-
encoder combined with deep neural networks to identify
circular RNA (circRNA)–disease associations. Besides
being classifier, auto-encoders can also be stacked as

feature extractor to learn the latent miRNA and disease
feature representations [18]. Madhavan and Gopakumar
[19] put forward a computational model based on a deep
belief network to identify lncRNA–disease associations.
Fan et al. [20] performed graph convolutional matrix
completion for the prediction of lncRNA–disease asso-
ciations with conditional random field and attention
mechanism. Mudiyanselage et al. [21] presented a graph
convolution network with message passing to uncover
circRNA–disease associations via learning the global
graph structure. Li et al. [22] integrated the miRNA–
lncRNA, lncRNA–disease and miRNA–disease association
matrices to construct multilevel heterogeneous graphs.
Then the hierarchical graph attention networks (GATs)
including node-layer attention network and semantic-
layer attention network were used to infer the miRNA–
disease associations.

The existing computational methods for the prediction
of biomarker–disease associations are mainly focused on
experimental data, whereas the massive biomedical liter-
ature can provide a complementary knowledge resource
to improve the prediction accuracy. With this in mind, we
developed a new framework called GTGenie with hybrid
graph and text features for the prediction of biomarker–
disease associations. In GTGenie, we used a GAT to cap-
ture the graph features from the integrated biomark-
er/disease similarities and proposed a text-based relation
representation method (TRR) to extract the text features
from the relevant literature. The text features reflect
the biomarker–disease correlations reported in published
literature. Based on both graph and text features, we
further adopted a bimodal fusion network (BFN) and
inductive matrix completion [23] to identify the unknown
biomarker–disease associations. The graph features and
text features can profile the biomarker–disease asso-
ciations from different perspectives. Their integration
thus can lead to more accurate prediction. In this study,
we investigated three types of biomarker–disease asso-
ciations, namely, miRNA–disease, microbe–disease and
lncRNA–disease associations. The experimental results
on the corresponding HMDD [24], HMDAD [25] and LncR-
NADisease [26] datasets suggested the competitiveness
of GTGenie with the other state-of-the-art methods. We
also verified the predicted associations via cross check-
ing from other independent databases and published
literature.

Materials and methods
Data
We used three representative datasets collected from
databases HMDD v2.0 [24], HMDAD [25] and LncR-
NADisease v2017 [26], to investigate the effectiveness of
GTGenie. In particular, the HMDD v2.0 dataset contains
5430 known miRNA–disease associations among 383
diseases and 495 miRNAs. The HMDAD dataset includes
450 known microbe–disease associations between 39
diseases and 292 microbes. The LncRNADisease v2017
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dataset contains 1765 known lncRNA–disease associ-
ations involving 328 diseases and 881 lncRNAs (the
duplicated associations were removed). The HMDD and
LncRNADisease datasets are accompanied with support-
ive descriptions of the associations in the form of both
free text and structured text. There is no counterpart
text-based information available for HMDAD dataset, so
we also manually collected the related sentences from
the public literature. Specifically, we searched in PubMed
for the eligible sentences with the names of diseases
and biomarkers and then confirmed the implied relation
based on the description.

The above three datasets are referred to as explicit
information sources as the biomarker–disease associ-
ations are explicitly indicated in the data. On top of
the explicit information sources, we also considered
implicit information sources, i.e. the MeSH, UniProt and
Expression Atlas datasets, with which the biomarker–
disease associations cannot be directly identified but can
be estimated via various similarity metrics. In particular,
the MeSH dataset (https://www.ncbi.nlm.nih.gov/mesh)
provides hierarchical structure information to calcu-
late disease semantic similarity. The UniProt dataset
(https://www.uniprot.org/) offers the hierarchical tree
structure of microbes for microbe semantic similarity
(MSS) calculation. The Expression Atlas dataset (https://
www.ebi.ac.uk/gxa/home) provides information on gene
expression patterns to measure miRNA expression pro-
file similarity and lncRNA expression profile similarity.

Proposed GTGenie
The proposed GTGenie combines both graph and text
features for the representation of biomarker–disease
associations. We integrated both explicit and implicit
information sources to extract graph features of the
biomarkers and diseases via a GAT. To capture the
text features of the biomarker–disease associations,
we introduced a TRR based on the text records in
curated datasets (e.g. HMDD and LncRNADisease) and
the published research articles from PubMed.

The overall framework of GTGenie is shown in Figure 1.
GTGenie consists of three main components including
GAT (Figure 2), TRR (Figure 3) and BFN (Figure 4). The GAT
extracts graph features from both disease and biomarker
similarity matrices whose elements represent the
disease–disease similarity (DDS), biomarker–biomarker
similarity (BBS) and Gaussian interaction profile kernel
similarity (GIPKS). The TRR extracts text features of
biomarkers and diseases based on the relevant sentences
in the literature. Finally, the BFN combines the graph
features and text features captured by the GAT and
the TRR to reconstruct the final biomarker–disease
associations matrix by filling the missing values.

Similarity measurements

In this section, we introduce the different measurements
of the similarities between biomarkers and diseases.

Disease–disease similarity (DDS): We measured the DDS
with disease semantic similarity [27]. For each disease,
a unique directed acyclic graph (DAG) was built on the
MeSH dataset to capture the relation of a disease with
others. Based on the disease DAG, the contribution of a
disease di to the semantic value of another disease dj can
be defined as D(di, dj) and the semantic value of disease di

itself as D(di). D(di, dj) and D(di) are calculated as follows:

D(di, dj) =
{

1, if di = dj

max
{
� ∗ D(d′, dj)|di ∈ T(d′)

}
, else

(1)

D(di) = 1 +
∑

t∈T(di)
D(t, di), (2)

where � represents a decay factor and is commonly set
to 0.5. T(di) indicates the ancestors of disease di in the
DAG. Two diseases sharing more common parts in their
DAGs are supposed to have higher similarity. Accordingly,
the semantic DDS between two diseases di and dj is given
below:

DDS
(
di, dj

)=
∑

t∈
(
T(di)

⋂
T
(
dj

)) (
D(t, di)+D(t, dj)

)
D

(
di

)+D
(
dj

) (3)

Biomarker–biomarker similarity (BBS): To evaluate the BBS of
miRNAs and lncRNAs, we obtained the gene expression
profiles from Expression Atlas that involves 44 801 genes
among 53 human tissues or cell types. Here the genes
were restricted to miRNA and lncRNA. Each gene is rep-
resented by a vector of size 53 to capture its expression
values in the form of Fragments Per Kilobase of exon per
Million fragments mapped (FPKM) in all human tissues
and cell types. Following [28], we used the Spearman
correlation coefficient to compute the BBS (∈ [0, 1]) as
follows:

BBS(bi, bj) =
∣∣∣∣1 − 6

∑N
k=1(bik − bjk)

2

N(N2 − 1)

∣∣∣∣, (4)

where bi and bj represent two given miRNA/lncRNA vec-
tors and N indicates the size of the gene expression
vectors.

To calculate the BBS of microbes, each microbial
organism is assigned to a taxonomy rank within
{Domain, Phylum, Class, Order, Family, Genus, Species}.
We downloaded the taxonomic ranks for each investi-
gated microbe from UniProt. The hierarchy of ranks was
represented as a tree structure and also converted into
a unique DAG. The same procedure used in calculating
DDS was also applied to the calculation of BBS, which
can also be referred to as MSS.

Gaussian interaction profile kernel similarity (GIPKS): The
calculations of DDS and BBS rely on the MeSH, Expres-
sion Atlas and UniProt datasets; however, these datasets
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Figure 1. GTGenie Framework.

Figure 2. Graph Attention Network architecture.

contain only a certain portion of the biomarkers and
diseases. Therefore, the contributed similarity matrices
tend to be sparse, which might deteriorate the perfor-
mance of the GAT. To address this issue, GIPKS [29] is
applied as an alternative similarity measurement. GIPKS
is based on the hypothesis that two diseases/biomarkers
with more similar association patterns can be consid-
ered more pathologically similar. Given two diseases di

and dj, their similarity based on GIPKS is calculated as
follows:

GIPKS
(
di, dj

) = exp
(−γd‖Yi· − Yj·‖2) (5)

γd =1/
(∑n

k=1
‖Yk·‖2

)
, (6)

where Yi· represents the i-th row vector of the biomarker–
disease adjacency matrix Y. In Y, the element Yij equals
to 1 if the i-th disease is experimentally verified to have
an association with the j-th biomarker, otherwise Yij is
0. The parameter γd controls the kernel bandwidth in
GIPKS and n denotes the number of diseases. Similarly,
the similarity between two biomarkers say bi and bj based
on GIPKS is defined as

GIPKS
(
bi, bj

) = exp
(−γd‖Y·i − Y·j‖2) (7)

γd =1/
(∑m

k=1
‖Y·k‖2

)
, (8)
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Figure 3. Text-based relation representation method (TRR) architecture. TD
i and TB

j represent the text features of the i-th disease and j-th biomarker,

respectively.

where Y·i indicates the i-th column vector of Y and
m is the number of biomarkers. Since GIPKS is calcu-
lated based on the known biomarker–disease associa-
tions recorded in Y, only the training data are used to
construct Y.

Integrated similarity of biomarkers and diseases: As shown in
Figure 1, GIPKS, DDS and BBS values are input into the
GAT to extract the graph features of biomarker–disease
associations. Let D ∈ Rn×n and B ∈ Rm×m denote the
DDS matrix and BBS matrix, respectively. The symbols n
and m indicate the numbers of diseases and biomarkers,
respectively. A feature matrix X ∈ R(n+m)×(n+m) is formed
as the input to the GAT:

X =
[
D 0
0 B

]
, (9)

where the element of D and the element of B are defined
as follows:

Dij =
{

0.5DDS(di, dj) + 0.5GIPKS(di, dj), if DDS(di, dj) �= 0

GIPKS(di, dj), else

(10)

Bij =
{

0.5BBS(bi, bj) + 0.5GIPKS(bi, bj), if BBS(bi, bj) �= 0

GIPKS(bi, bj), else

(11)

Graph attention network

We used a GAT [30] to learn the graph features based on
biomarker similarity and disease similarity as shown in

Figure 2. Given a node being a biomarker or a disease, the
GAT firstly learns the attention values of its neighbors
based on their importance and then combines the fea-
tures of the neighbors according to their attention values.
Afterward, the GAT outputs the entity graph features
through K-layers aggregation based on the features of the
node and its neighbors.

The multilayer aggregator is described as follows. The
importance of the features of the j-th node vj to the i-
th node vi in the k-th layer aggregator is calculated as
follows:

ek
ij = f (Whhk

i , Whhk
j ), (12)

where f (·, ·) is a single-layer feedforward neural network,
Wh is a parameterized matrix that transforms the input
features into hierarchical feature representation for the
biomarkers and diseases and hk

i ∈ R(n+m) denotes the
representation of the i-th node in the k-th layer aggre-
gator. Note that the input of the first layer aggregator
h1∗ ∈ R(n+m)×(n+m) is the initial feature matrix X defined in
Eq. (9). To regulate the effects across different nodes, the
edge weights αk

ij in the k-th layer aggregator is normalized
across all the sampled associations of node vj using the
softmax function:

αk
ij =

exp(LeakyReLU(ek
ij))∑

t∈�(vi)
exp(LeakyReLU(ek

it))
, (13)

where �(vi) denotes the neighborhood of node vi and
LeakyReLU(·) is a leaky rectified linear activation func-
tion (with the negative input slope set to 0.2). The nor-
malized attention coefficients are used to compute a
linear combination of the neighbors of vi, serving as the
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Figure 4. Bimodal fusion network architecture.

neighborhood representation.

hk
�(vi)

=
∑

t∈�(vi)

αk
ith

k
t (14)

Let hk∗ ∈ R(n+m)×r and hk
�(∗) ∈ R(n+m)×r denote the represen-

tation of the k-th layer aggregator and its corresponding
neighborhood representation, respectively, where r is a
predefined feature dimension of the nodes (r is fixed to
m+n for the first layer, i.e. when k = 1). Based on Eq. (14),
we can concatenate hk∗ with hk

�(∗) for updating the (k + 1)-
th layer embedding as follows:

hk+1
∗ = Elu((hk

∗ ⊕ hk
�(∗))ω

k + β), (15)

where ⊕ represents the concatenation operation and
Elu(·) denotes an exponential linear activation function.
ωk ∈ R2r×r(ω1 ∈ R2(m+n)×r) and β ∈ R(n+m)×r are the
parameterized weight and bias matrices, respectively.
After K-layers aggregation, we can get the final graph
representation matrix G ∈ R(n+m)×r for diseases and
biomarkers as follows:

G =
[
GD

GB

]
, (16)

where GD ∈ Rn×r and GB ∈ Rm×r represent the final
graph features of all involved diseases and biomarkers,
respectively.

Text-based relation representation

We developed TRR method to automatically measure
the correlations between biomarkers and diseases based
on the relevant sentences retrieved from the literature.
The architecture of TRR is shown in Figure 3. Each con-
firmed pairwise association records the related descrip-
tion with at least one sentence identified in the litera-
ture. Here, the association sentence set (ASS) is defined

to represent the set of relevant sentences verifying a
given biomarker–disease association. To limit the effect
of the high-frequency associations, at most three sen-
tences were included in each ASS.

To obtain the TRR of a biomarker–disease associa-
tion, a sub-network is firstly constructed for each dis-
ease/biomarker. As shown in Figure 3, the sub-network
of a biomarker encodes the interactions of this biomarker
with all related diseases. Similarly, the sub-network of a
disease records the interactions of this diseases with all
related biomarkers. Secondly, the ASS for each associa-
tion between a disease di and a biomarker bj is identified.
Based on the sub-networks of di and bj, we also sampled
ASSs for all associations involving di and bj. Thirdly, the
pretrained language model BioBERT [31] is adopted to
estimate the correlation coefficient for each sentence
in ASS to extract the sentence embedding. For the sake
of efficiency, BioBERT was directly used in the training
process without additional fine-tuning. In this way, the
embedding scores of the associations involving di and bj

are aggregated to reach the final text features TD
i and TB

j
of di and bj, respectively. Compared with the manually or
computationally curated databases, which can provide
only ASS as the qualitative pieces of evidence of the
biomarker–disease associations, the text features gen-
erated by TRR can provide quantitative measure of the
biomarker–disease associations, enabling more accurate
comparison or evaluation of the associations.

Bimodal fusion network

The core idea of GTGenie is to combine both graph
features and text features for representing a given
biomarker–disease association. To this end, we used a
BFN to reconstruct the relation matrix. The architecture
of the BFN is presented in Figure 4. Firstly, the graph
features G = [GD, GB] and the text features T = [TD, TB]
of diseases and biomarkers are fed into the feedfor-
ward neural networks to obtain the refined feature
representations G = [GD, GB] and T = [TD, TB], respectively.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/23/5/bbac298/6651308 by guest on 13 O

ctober 2025



Prediction of biomarker–disease associations | 7

The sub-components GD ∈ Rn×u1 , GB ∈ Rm×u1 , TD ∈ Rn×u1

and TB ∈ Rm×u1 indicate the disease graph features,
biomarker graph features, disease text features and
biomarker text features output by the corresponding
feedforward neural networks, respectively. The value u1

denotes the size of the first fully connected layer dense1.
Secondly, the inductive matrix completion technique
incorporates the side features associated with the rows
(diseases) and the columns (biomarkers) to recover a
low-rank parameter matrix (i.e. WG ∈ Ru1×u1 or WT ∈
Ru1×u1 ) [23, 32]. Through matrix completion, nonlinear
embedding representation of graph feature and text
features can be reflected and captured by the low-
dimensional restriction of the embedding space. The
inductive matrix completion technique is used to recon-
struct the incomplete association matrix by inferring
the missing values from the known information, and
obtain the graph relation RG ∈ Rn×m and the text relation
RT ∈ Rn×m as follows:

RG = GDWG(GB)T (17)

RT = TDWT(TB)T (18)

Finally, the sum of RG and RT is input to the sigmoid
activation function to reconstruct the relation matrix.
The loss function of the BFN is given below:

L(G, T) = ‖Y − σ(RG + RT)‖2
F, (19)

where σ represents the sigmoid activation function, Y
is the biomarker–disease adjacency matrix constructed
based on the training data and ‖ · ‖F calculates the
Frobenius norm. BFN is iterativly optimized until the
maximum number of epochs is reached.

Results and discussion
Experiment setup
To evaluate the performance of GTGenie on the pre-
diction of biomarker–disease associations, we com-
pared it with other state-of-the-art methods on HMDD,
HMDAD and LncRNADisease datasets with 5-fold cross-
validation. Since the three data sources were curated to
depict different types of biomarker–disease associations,
i.e. HMDD for miRNA–disease associations, HMDAD
for microbe–disease associations and LncRNADisease
for lncRNA–disease associations, there are no overlap
between these three data sources. An independent
classification task was therefore proceeded on each
dataset and the corresponding state-of-the-art meth-
ods specified on each dataset were involved in the
comparison with GTGenie. In each round of cross
validation, there is no overlap between the testing set
and training set, i.e. the 1-fold test samples were unseen
during the training of the model. The performance

was measured in terms of the area under the receiver-
operating characteristic (AUC) and the area under
the precision-recall curve (AUPR). Since there are no
available resources purposed for negative samples (i.e.
known irrelevant biomarker–disease associations), we
followed the most commonly used sampling strategy to
generate the negative samples randomly from unknown
biomarker–disease associations [33, 34]. The negative
samples were randomly sampled in the beginning of
the study and fixedly used throughout the study. We
evaluated the average performance of GTGenie over 10
random runs of cross-validation. To verify the prediction
results of GTGenie, we also cross checked the predicted
biomarker–disease associations with other independent
databases and published literature. All experiments were
carried out on an Ubuntu 16.04 platform with Tesla K80
GPU.

GTGenie was implemented in Python and Tensorflow
v1.15. The learning rates, training epochs and dropout
rates were empirically set to 1e-3/500/0.1, 3e-3/300/0.0
and 3e-3/300/0.1 for the HMDD, HMDAD and LncRNADis-
ease datasets, respectively. The effects of using different
settings for these three parameters were investigated
in the Supplementary Materials. The Adam optimizer
[35] was used for the optimization of BFN. The number
of graph aggregator layers K in GAT was set to 4. The
number of neurons r in the GAT was set to 256, 64 and
64 for the HMDD, HMDAD and LncRNADisease datasets,
respectively. The sizes u0 and u1 of the fully connected
layers dense0 and dense1 in BFN, respectively, were set
according to the value of r, i.e. u0 = 2u1 = r. The effects
of the key components of GTGenie as well as the settings
of the parameters including K, r, u0 and u1 to the perfor-
mance of GTGenie were investigated in the last part of
the experimental study. With the above parameter set-
tings, the average time costs of GTGenie for performing 5-
fold cross validation on HMDD, HMDAD and LncRNADis-
ease datasets were 318, 65 and 199 s, respectively.

Comparisons with other state-of-the-art methods
GTGenie was compared with other state-of-the-art
methods that have also been applied to the three
datasets. Note that, since each of these methods was
originally designed for a single specific prediction task,
GTGenie was compared with different methods on
different datasets. On HMDD dataset, GTGenie was
compared with HGANMDA [22], GAEMDA [36], VGAE
[37], TSMDA [14], SMALF [18], GBDT-LR [38] and PBMDA
[39]. On HMDAD dataset, GTGenie was pitted against
five representative methods GATMDA [33], LRLSHMDA
[40], RNMFMDA [4], PBHMDA [41] and NTSHMDA [42].
On LncRNADisease dataset, GTGenie competed with
four representative methods including GCRFLDA [20],
DMFLDA [43], LDASR [11] and LRWHLDA [44]. The
parameters of all the compared methods were set
following the corresponding original references.

The results on HMDD dataset are shown in Fig. 5a,
where GTGenie obtained the second best performance.
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Figure 5. The AUC results of different methods on HMDD, HMDAD and LncRNADisease datasets.

TSMDA won on this dataset mainly due to the use of
positive-unlabeled learning [45, 46] to choose reliable
negative samples. Among the deep learning meth-
ods, both HGANMDA and GTGenie use graph fea-
tures extracted from curated databases for predicting
biomarker–disease associations, whereas, on top of graph
features, GTGenie also introduces text features extracted
from published literature to depict the biomarker–
disease associations from different angles. Taking the
advantage of both graph and text features, GTGenie
achieved a higher AUC (by 3.8%) than HGANMDA
on the HMDD dataset. Nevertheless, HGANMDA can
reconstruct the knowledge in one database based on the
information of another through a multi-view learning
framework, which could be borrowed to improve the
generalization ability of GTGenie. GTGenie achieved the
best performance on HMDAD (as shown in Fig. 5b) and
LncRNADisease (as shown in Fig. 5c). It is worth noting
that GATMDA also uses GAT but not text features. It
was the runner-up on HMDAD dataset. Overall, GTGenie
showed better generalization ability and achieved a
robust prediction performance on the three benchmark
datasets. This result may attribute to the use of both
explicit and implicit information sources, the concurrent
capturing of both graph and text features and the orthog-
onal information learned in the bimodal representations.

Cross checking
In this section, the top-rank predicted associations of
GTGenie that do not occur in the training set were
cross checked by other independent databases, including
dbDEMC v3.0 ([47]), MNDR v3.1 ([48]) and Lnc2Cancer
v3.0 ([49]). Moreover, supportive pieces of evidence of
the identified associations were also sought from the
literature in PubMed. Given an identified association,
we reported the PMID of a published paper where the
association was confirmed.

We firstly investigated whether the 20 top predicted
associations of GTGenie in terms of probability score
could be confirmed by the independent databases or the
literature. The validation results trained on HMDD v2.0,
HMDAD and LncRNADisease v2017 are shown in Table 1.
All the top 20 predicted associations were confirmed by
the independent databases or the literature. For example,
the association of has-mir-146a and Adenocarcinoma was
verified in [50] (PMID:32382320) where the overexpres-
sion of has-mir-146a was reported to reduce the prolif-
eration of human Lung adenocarcinoma cell line A549.

The association of lncRNA H19 and Alzheimer’s disease
was indicated in [51] (PMID:30107531). The silenced H19
could accelerate the viability and repress apoptosis of
PC12 cells by stimulating Aβ25-35 in Alzheimer’s dis-
ease. Since there are no proper databases available for
cross checking of the microbe–disease associations, the
PubMed literature were used to validate the predicted
microbe-disease associations. For example, multiple bac-
teria taxa in the phylum Actinobacteria were found to be
associated with the risk of Type 2 diabetes [52], which
confirms the 3rd predicted microbe–disease associations
on the HMDAD dataset.

We also investigated the 50 top predicted associations,
where 100%, 90% and 96% associations identified on
HMDD v2.0, HMDAD and LncRNAdisease v2017 were
confirmed, respectively. The details are provided in the
Supplementary Materials.

Effects of key model components and parameters
In this section, we investigated the effects of the implicit
information sources, the graph and text features, the
proposed MSS, the pretrained model BioBERT and the
parameter settings (the number of graph aggregator lay-
ers K and number of neurons in neural networks r) to the
performance of GTGenie.

Effects of using implicit information sources

GTGenie uses implicit information sources including the
MeSH, UniProt and Expression Atlas datasets for hetero-
geneous similarities estimation. We conducted ablation
experiments to evaluate how GTGenie performs with and
without using the MeSH, UniProt and Expression Atlas
datasets. The model trained merely with the known asso-
ciations and text features, i.e. without BBS and DDS, was
compared with the conventional GTGenie. The results
shown in Figure S1 of the Supplementary Materials sug-
gest that GTGenie attained 1% improvement of AUC by
using the implicit information sources.

Moreover, the implicit information sources enable
GTGenie to handle the unseen associations in the
training data especially for minor diseases where there
are few associations existing in the training data and
the corresponding GIPKS matrix constructed is sparse.
In this subsection, three human diseases, i.e. Asthma,
Colorectal cancer and Type 2 diabetes coexisting in
HMDD, HMDAD and LncRNADisease, with relatively
few associations were selected for investigating the
effects of using implicit information sources. For each
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Figure 6. Percentage of masked association data among the top 5th, 15th and 25th percentile of GTGenie predicted associations. The scale on the top
shows the percentage of the inferred associations.

case, the target disease along with its associations were
completely masked, i.e. excluded from the training set.
Figure 6 shows the prediction results of GTGenie with
and without the implicit information sources, i.e. BBS and
DDS, on the test data. Given the predicted associations
ranked by the probability scores, we measured the
percentage of the masked associations among the
top 5th, 15th and 25th percentile of the predictions,
respectively. As shown in Fig. 6a, with BBS and DDS,
the majority of the masked associations were identified
at the top 25th percentile of the prediction results of
GTGenie, where all Asthma-related associations were
among the top 25th percentile. On average, 48%, 58%
and 79% masked associations occurred at the top 5th
percentile of the inferred miRNA-related, microbe-
related and lncRNA-related associations, respectively.
Without BBS and DDS, the correctly predicted masked
associations of GTGenie at the top 5th percentile
of the inferred miRNA-related, microbe-related and
lncRNA-related associations decreased 8%, 26% and 3%,
respectively (Fig. 6b). The observation suggests that using
merely GIPKS cannot provide sufficient information
for predicting associations of the minor diseases. The
implicit information sources make a good complement
to GIPKS on minor diseases. We also compared GTGenie
with the recently developed method GATMDA [33], which
also can make prediction on unseen associations, with
the same experimental setting. GATMDA predicted 43%,
46% and 77% of the masked associations at the top
5th percentile of the miRNA-related, microbe-related
and lncRNA-related associations, respectively. Compared
with GATMDA, the proposed GTGenie with the help of
implicit information sources managed to identify more
masked associations on the three cases.

Contributions of graph and text features

The contributions of graph and text features extracted
by GAT and TRR, respectively, were investigated through
ablation experiments. Excluding the text features,
GTGenie suffered from degradation of AUC by 2.3%,

Figure 7. ROC curve analysis on the HMDD dataset with graph features
and different combinations of text features.

0.8% and 1.1% on HMDD, HMDAD and LncRNADisease,
respectively. Without graph features, the prediction
performance of GTGenie was restricted to the availability
of text information and AUCs of 0.8688, 0.6057 and 0.6388
were obtained on HMDD, HMDAD and LncRNADisease,
respectively. With respect to the existing methods, one
main novelty of GTGenie is the involvement of text
features. Therefore, we further explored the effects of
reducing the amount of available text features on HMDD
in Figure 7. As expected, the performance of GTGenie
was highly sensitive to the amount of text information
when only text features were used.

Effectiveness of MSS

The effectiveness of the MSS, which is a new semantic
similarity metric of microbe defined in this study, was
evaluated in the comparison with the other four rep-
resentative microbe similarities, i.e. functional similar-
ity [53], cosine similarity [54], GIPKS [29] and microbe
taxonomic similarity [55]. As illustrated in Table 2, GTGe-
nie integrated with MSS achieved the highest AUC mean
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Figure 8. The AUC and AUPR curve with different neurons r and layers K.

Table 2. Comparison of different measurements of microbe
similarities

Microbe Similarity AUC AUPR

Functional 0.9558 ± 0.0173 0.9529 ± 0.0219
GIPKS 0.9563 ± 0.0155 0.9545 ± 0.0211
Cosine 0.9601 ± 0.0217 0.9570 ± 0.0228
Taxonomic 0.9620 ± 0.0151 0.9589 ± 0.0175
MSS (Ours) 0.9654 ± 0.0160 0.9635 ± 0.0174

value of 0.9654. Microbe taxonomic similarity, also uti-
lizing taxonomic information, achieves the second-best
AUC of 0.9620. However, microbe taxonomic similarity
only focuses on the lowest common ancestor rather than
the hierarchy of taxonomic information considered in
MSS. The result suggests that the hierarchy of taxo-
nomic information is more effective in the estimation of
microbe–microbe similarity.

Effects of BioBERT

In this part, the use of the other two pretrained
BERT-based language models, i.e. PubMedBERT [56]

and SciBERT [57], in GTGenie was tested to see the
effects of BioBERT. PubMedBERT is pretrained model
using the abstract and full text from PubMed papers.
With an in-domain scientific vocabulary, SciBERT is
pretrained on a large multi-domain corpus of scientific
publications. For domain-specific language representa-
tion, BioBERT is pretrained on large-scale biomedical
corpora. Table 3 shows that, using BioBERT and SciBERT,
GTGenie achieved comparable performance, that is,
slightly better than that of using PubMedBERT. This
is because domain-specific corpora could refrain from
a semantic distribution shift for frequent words. The
results also suggest that GTGenie has strong robustness
on the effects of BERT-based text embedding. BioBERT is
suggested in GTGenie for the sake of generalization.

Influence of the key parameters

GTGenie involves two key parameters, namely, the
number of graph aggregator layers K and the number
of neurons r in the GAT (also used in the BFN). Their
effects to the performance of GTGenie were investigated
as follows. The performance of GTGenie with K = {1,
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Table 3. The AUC of different pretrained BERT-based language
models on HMDD, HMDAD, and LncRNADisease

HMDD HMDAD LncRNADisease

PubMedBERT 0.9694 ± 0.0031 0.9604 ± 0.0157 0.9740 ± 0.0094
SciBERT 0.9746 ± 0.0025 0.9612 ± 0.0167 0.9805 ± 0.0045
BioBERT 0.9755 ± 0.0022 0.9654 ± 0.0160 0.9810 ± 0.0043

2, 3, 4, 5} and r = {32, 64, 128, 256, 512} is plotted in
Figure 8. The best performance was achieved when K = 4
and r = 256/64/64 on HMDD, HMDAD and LncRNADis-
ease, respectively. GTGenie showed good tolerance for
parameter fluctuation. Larger values of K and r do not
necessarily lead to better performance.

On top of the aforementioned parameters and model
components, we also investigated the impact of using
different ratios of positive and negative samples, and the
effects of using different fusion modules and strategies in
the Supplementary Materials. The experimental results
justify the current configurations of GTGenie.

Conclusions
In this paper, we presented a new computational model
named GTGenie for the prediction of biomarker–disease
associations by considering both graph and text fea-
tures. The methodological novelties of GTGenie lie in the
extraction of TRR from the relevant sentences of reported
literatures as well as the integration of both graph and
text features into a BFN. Particularly, to effectively extract
the text features, we proposed a TRR method to mea-
sure the correlations between biomarkers and diseases
automatically from the relevant sentences in literature.
Based on both graph and text features, a BFN was devel-
oped to reconstruct the relation matrix by filling the
missing entries, i.e. identifying the unknown biomarker–
disease associations. Furthermore, to improve the repre-
sentation of BBS for microbe, we also proposed a novel
MSS by introducing the hierarchy of taxonomic informa-
tion. Extensive simulation experiments were designed to
demonstrate the effectiveness of GTGenie.

Despite the promising performance achieved by
GTGenie, there is room for improvement in the following
potential directions. Firstly, since the feature dimension-
ality is fixed by the size of input similarity matrix, a
trained GTGenie on one dataset should be retrained
from scratch to fit another dataset. GTGenie is limited
to infer new associations within a single biomarker–
disease association type. To better repurpose on a second
related prediction task, transfer learning techniques
(e.g. multi-task learning [58], knowledge distillation [59]
and multi-view learning [22]) or additional linkages
(e.g. miRNA–microbe, miRNA–lncRNA and lncRNA–
microbe interactions) can be introduced to speed up the
training and improve the generalization performance of
GTGenie. Secondly, GTGenie can also be extended to

predict other types of associations/relationships (e.g.
drug–disease and protein–protein) via hybrid modality
fusion. The graph features and text features can be
obtained from explicit and implicit datasets; however,
GTGenie is likely restricted to the availability of text
information. Some previous studies regarding biomedical
text mining (e.g. miRiaD [60] and miRCancer [61]) could
provide insights into developing an efficient text mining
tool for automatically detecting more ASS in literature.
Moreover, the text-based entity representation method
(TER) is effective for characterizing the attributes and
interaction patterns of single entity itself. Integrating
TER and TRR into GTGenie can jointly decipher the
linkage between biomarker and disease from perspec-
tives of entity property and pairwise correlation, so
as to extract more refined text representation. Thirdly,
most GIPKS-based methods tend to have a bias toward
those well-annotated entities [62, 63]. The main reasons
are largely attributed to the inherent class imbalance
issue in the datasets and the adopted GIPKS method
that encourages higher certainty to those entities
with more known associations. This issue could be
further addressed using more concrete and denser
similarity matrix instead of GIPKS. Fourthly, using
various similarity extraction methods can help further
improve the performance of GTGenie by addressing the
sparsity of BBS. For example, the linguistic properties of
biomarkers can be captured by the existing biological
sequence analysis tools (e.g. BioSeq-Analysis2.0 [64]
and BioSeq-BLM [65]), providing new insights into
calculating informative BBS based on natural language
processing. Finally, GTGenie is merely a computational
model for assisting the identification of biomarker–
disease associations. The predicted associations should
be further verified with wet lab experiments or clinical
trials.

Key Points

• Heterogeneous data resources and various similarity
matrices were integrated to effectively measure the char-
acteristics of biomarkers and diseases from different
perspectives.

• GTGenie combined both graph and text features for the
prediction of biomarker–disease associations. These two
venues provided complementary information that can
help improve the representation learning capability.

• We demonstrated the effectiveness and flexibility of
GTGenie in the comparison with other state-of-the-art
methods and the investigation of the effects of the key
components.

Supplementary materials
Supplementary data are available at online https://
academic.oup.com/bib and https://github.com/
Wolverinerine/GTGenie.
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