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Abstract

Tumor cell fraction (TCF), or tumor purity, is a critical factor in cancer diagnosis, prognosis, and molecular profiling. While
genomic methods provide accurate TCF estimates, they are costly, time-consuming, and lack spatial resolution. Recent whole slide
image-based approaches offer a more scalable alternative but often suffer from limited interpretability and inconsistent accuracy.
We propose a novel TCF estimation method based on tissue–nuclei density (TNuD), integrating tissue region segmentation and
nuclear classification from hematoxylin and eosin -stained whole slide images. The method consists of a DeepLabV3+-based
tissue region segmentation model and a HoVer-Net-based nuclear segmentation and classification model. The outputs of the two
models are fused to construct a TNuD matrix representing the spatial density relationships between tissue and nuclei. We evaluated
the proposed method against four TCF estimation baselines using expert-annotated breast and ovarian cancer datasets. The proposed
TNuD-based method achieved the lowest mean squared error (MSE = 0.0214) and highest correlation with pathologist annotations
(Pearson = 0.8683; Spearman = 0.8737) in breast cancer datasets. It also demonstrated promising transferability to ovarian cancer
tissues. Comparative analysis also showed superior precision and interpretability over region- or nucleus-only models. The TNuD-
based method effectively captures tumor heterogeneity by combining macro- and micro-level histological features. It offers a
scalable, interpretable, and accurate solution for TCF estimation in digital pathology, supporting broader clinical and translational
oncology applications.

Keywords: Tumor cell fraction, Digital pathology, Whole slide image, Tissue segmentation, Nuclear segmentation and
classification

Introduction

Cancer is a complex and heterogeneous group of diseases
characterized by uncontrolled cell proliferation, invasion of sur-
rounding tissues, and the potential for metastasis to distant or-
gans Siegel et al. (2023); Shi et al. (2024). Tumor microen-
vironment (TME) is a complex ecosystem composed of tumor
cells and their surrounding cellular, molecular, vascular, and
extracellular matrix components, as illustrated in Figure 1 An-
derson and Simon (2020); Crosby et al. (2022). Interactions
among these components drive tumor growth, metastasis, and
response to therapy, making the TME a key target for the de-
velopment of new therapeutic strategies and improvement of
treatment outcomes Bejarano et al. (2021); Zhang et al. (2024).

Tumor cell fraction (TCF), or tumor purity, refers to the pro-
portion of cancer cells within a tumor sample Brendel et al.
(2022). TCF is an important measurement for understanding
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Figure 1: A schematic diagram illustrating the distribution of different tissue
regions and corresponding nuclear types in a WSI. Tissue region types (e.g.,
tumor, stromal, lymphocytic, necrosis, ambiguous regions) and nuclear types
(e.g., tumor nuclei, stromal nuclei, sTILs, others, unlabelled nuclei) are repre-
sented by distinct colors, as indicated in the legend.

TME, as it provides insights into TME composition and is a
key factor influencing tumor biology, immune evasion, thera-
peutic response, and clinical outcomes. In tissue sample DNA
sequencing, a high TCF provides a more accurate representa-
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tion of the tumor’s genomic characteristics, while a low TCF
can dilute biomarker signals, increasing the risk of false nega-
tives and complicating treatment decisions Cheng et al. (2020);
Koo and Rhee (2021); Yu et al. (2023). TCF also serves as
a prognostic indicator, e.g., lower TCF in colorectal cancer is
associated with poorer survival rates West et al. (2010), while
higher TCF in stage I lung adenocarcinoma correlates with bet-
ter post-surgery outcomes Jeon et al. (2022).

TCF evaluation typically involves computational analysis of
integrated genomic data (epigenomic, genomic, and transcrip-
tomic) or examination of digital pathology whole slide im-
ages (WSIs) of the tissue samples Haider et al. (2020). Ge-
nomic sequencing methods, including transcriptomic Revkov
et al. (2023) as well as somatic alteration and methylation-
based approaches Zheng et al. (2014); Locallo et al. (2019),
provide comprehensive molecular insights and thus generally
offer more precise TCF estimates Tbeileh et al. (2023). How-
ever, the transcriptomic approaches struggle with stromal or im-
mune infiltration and variability in RNA sequencing protocols
Benelli et al. (2018); Choi et al. (2023). The somatic alteration
and methylation-based approaches can be constrained by sam-
ple type, sequencing depth, and the presence of matched normal
references Zheng et al. (2014); Wei et al. (2021). In addition,
the high costs and lengthy data processing times of these ap-
proaches limit their applicability in rapid clinical testing sce-
narios.

In contrast, tissue image-based approaches leverage
histopathological structures to estimate TCF, representing a
cost-effective alternative and emerging as a preferred option
Augustine (2022). However, they are limited by staining vari-
ability, the need for extensive annotations, and segmentation
difficulties in immune-infiltrated or densely packed regions
Schoenpflug et al. (2025); Osinski et al. (2022); Brendel et al.
(2022); Choi et al. (2023). Both types of approaches have
advanced TCF estimation, yet challenges remain regarding
cross-institutional variability, interpretability, and data avail-
ability Haider et al. (2020); Menzel et al. (2023). Visual
analysis of tissue images by trained pathologists remains
widely used, but faces challenges such as subjectivity, variabil-
ity in image quality, difficulty in distinguishing tumor cells,
and inefficiencies in high-throughput image analysis Haider
et al. (2020). More recently, artificial intelligence (AI)-driven
computational approaches for WSI-based TCF estimation,
including tissue region-based Brendel et al. (2022); Su et al.
(2022); Cheng et al. (2025) and nuclear detection approaches
Liu et al. (2020); Sun et al. (2021); Priego-Torres et al. (2022);
Sakamoto et al. (2022); Choi et al. (2023); Liu et al. (2024a);
Kang et al. (2024), have been developed to address these
limitations. Many of these methods rely on black-box AI
algorithms, whose lack of interpretability hinders clinical
adoption. In contrast, nuclear detection methods enable TCF
evaluation at the nuclear level, providing greater detail and
interpretability Silva et al. (2022). However, challenges remain
in achieving accurate nuclear detection and classification,
especially given the complexity and scale of WSI datasets
Gerardin et al. (2024). These limitations highlight the need
for advanced models that integrate scalability, interpretability,

Table 1: Summary of Abbreviations

Description
TME Tumor Microenvironment
TCF Tumor Cell Fraction
H&E Hematoxylin-Eosin
WSI Whole Slide Image
AI Artificial Intelligence
CNN Convolutional neural network
TNuD Tissue-Nuclei Density
TRS Tissue Region Segmentation
NuSC Nuclei Segmentation and Classification
ROI Regions of Interest
TC Tile Classification
NuCLS Nucleus Classification, Localization, and Segmentation
BCSS Breast Cancer Semantic Segmentation
NP Nuclear Pixel
HoVer Horizontal and Vertical distance maps
NC Nuclear Classification
MSE Mean Squared Error
TILs Tumor-Infiltrating Lymphocytes
GT Ground Truth
MIL multiple instance learning

and high accuracy to address the challenges of TCF estimation
effectively.

In this article we propose a Tissue-Nuclei Density (TNuD)-
based TCF estimation method, which offers a comprehensive
and clinically interpretable approach by integrating both tissue-
and nuclei-level information from the WSI. Central to this
method is the TNuD model, which quantifies the density re-
lationships between tissue region types and nuclei by calcu-
lating nuclear areas and counts within specific tissue regions.
Specifically, tissue- and nuclei-level information is obtained
through Tissue Region Segmentation (TRS) and Nuclei Seg-
mentation and Classification (NuSC). To evaluate the proposed
method, we conducted an investigational clinical study to col-
lected 54 breast and 52 ovarian cancer tissue samples and con-
struct Hematoxylin-Eosin (H&E) WSI datasets with detailed
tumor region of interest (ROI) annotations and TCF scores
manually estimated by experienced pathologists. The abbre-
viations used throughout this paper are summarized in Table 1
for clarity and consistency.

Methods

The proposed TNuD-based TCF estimation approach com-
bines TRS-based and NuSC-based methods. The framework of
this approach is illustrated in Figure 2. First, an H&E WSI im-
age undergoes preprocessing, which includes color normaliza-
tion to mitigate staining variations and the extraction of a tissue
region mask to exclude non-tissue areas. Next, a sliding win-
dow approach with overlapping regions divides the WSI into
smaller image patches, enabling localized analysis while pre-
serving spatial context. In the subsequent steps, a trained TRS
model predicts the tissue region type for each pixel within the
patches. These predictions are then aggregated to generate a
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Figure 2: The workflow of obtaining the TNuDM.

comprehensive tissue region map for the entire WSI. Simulta-
neously, a trained NuSC model detects, segments, and classi-
fies individual nuclei within each patch. The outputs from all
patches are combined to produce a nuclear instance mask and
a nuclear type mask for the WSI, ensuring a precise represen-
tation of nuclear distributions. Finally, the tissue region maps
(T̃ ) and nuclear maps (Ñ and C̃) are fed into a TNuD model,
which quantifies nuclear density relationships across different
tissue regions using a set of relationship matrices.

Building on the authors’ previous study Wang et al. (2023), a
DeepLabV3+ model was implemented in the TRS model Chen
et al. (2018); Vykopal et al. (2023); Liu et al. (2024b). This
architecture leverages the capability of Convolutional neural
network (CNN) and Atrous Spatial Pyramid Pooling (ASPP)
to capture global contextual information, thereby enhancing
segmentation efficacy. HoVer-Net Graham et al. (2019) was
adopted in the NuSC model. It is a CNN-based framework
specifically designed for the concurrent segmentation and clas-
sification of nuclear instances in histopathological images. It
was demonstrated that incorporating tissue region information
as additional parameters significantly improved nuclei classifi-
cation accuracy Wang et al. (2023); Hörst et al. (2024). The
TNuD model was designed based on our observations of the
TME to integrate intricate nuclear density relationships within
the TME into TCF analysis, resulting in a more precise, com-
prehensive, and clinically interpretable TCF estimation. This
represents the core innovation of the proposed method, and its
design is described here.

TNuD Model Design

TME exhibits a distinct correlation between tissue type and
nuclear density, as illustrated in Figure 1. Proliferative regions,
such as tumors and lymphocytic infiltrates, exhibit high nu-
clear density, whereas non-proliferative or necrotic areas show
markedly lower nuclear density. Furthermore, specific tissue
regions are predominantly composed of certain nucleus types,
reflecting their functional or pathological characteristics. How-
ever, these regions usually contain a mixture of other nucleus
types, reflecting the inherent complexity and heterogeneity of
the TME. The TNuD model was proposed to capture and quan-
tify the density relationships between various tissue types and

Table 2: Summary of Mathematical Symbols

Symbol Description
I ∈ Rw×h×3 WSI with width w, height h, and RGB channels
T Set of all tissue types.
C Set of all nuclear types.
T ∈ Tw×h Tissue region map assigning a tissue type to each

pixel
N ∈ Rw×h Nuclear instance map assigning a unique label to

each nucleus
C ∈ Cw×h Nuclear type map indicating the nuclear type for

each pixel
x one of nuclear types
y one of tissue types
Cx Binary mask for nuclear type x
Ty Binary mask for tissue type y
Nx Nuclear instance mask for a specific nuclear type x
⊙ Element-wise product operation
Fx Nuclei purity fraction for nuclear type x
| · |+ Cardinality of a matrix, counting unique nonzero el-

ements
T̃ , Ñ, C̃ Estimated tissue region, nuclear instance, and nu-

clear type maps.
F̃x Estimated nuclei purity fraction for nuclear type x
∥ · ∥0 Zero-norm of a matrix (count of nonzero elements)
αy,Ñ Proportion of tissue area occupied by nuclear pixels
βy,x Proportion of nuclear pixels within tissue area T̃y

that are of type x
γy,x Density of nuclei of type x in tissue region T̃y

θy,C Average number of nuclei per unit nuclear area in
tissue region T̃y

ᾱy,N Averaged αy,Ñ over multiple WSIs
β̄y,x Averaged βy,x over multiple WSIs
γ̄y,x Averaged γy,x over multiple WSIs
θ̄y,C Averaged θy,C over multiple WSIs
m Total number of WSIs
T̃y Estimated tissue type mask of type y

their corresponding nuclei. Its mathematical definition is pro-
vided as follows. For clarity, Table 2 summarizes all parameter
symbols and their definitions.

Let a WSI be denoted as I ∈ Rw×h×3, where w and h rep-
resent the image’s width and height, respectively, and the three
channels correspond to the RGB color space. A WSI can be fea-
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tured by three maps, i.e., the tissue region map T , the nuclear
instance map N, and the nuclear type map C. Specifically, the
tissue region map T ∈ Tw×h assigns a tissue type to each pixel.
If Ti, j = y, it indicates that the pixel at location (i, j) belongs to
tissue type y, with y = 0 denoting the absence of a specific tis-
sue type. The nuclear instance map N ∈ Rw×h assigns a unique
label to each nucleus, where Ni, j = k signifies that the pixel at
(i, j) corresponds to the k-th nucleus, with k as a positive integer
serving as its unique identifier. If a pixel does not belong to any
nucleus, k is set to 0. Lastly, the nuclear type map C ∈ Cw×h

identifies the nuclear type for each pixel. If Ci, j = x, the pixel at
location (i, j) is assigned nuclear type x, with x = 0 indicating
that the pixel does not correspond to any nucleus.

For conciseness and clarity, we introduce the matrix Cx to
identify the pixels belonging to nuclear type x as:

(Cx)i, j =

{
1, if Ci, j = x
0, otherwise (1)

Similarly, the tissue type indicator matrix Ty identifies the pix-
els corresponding to tissue type y, i.e.,

(Ty)i, j =

{
1, if Ti, j = y
0, otherwise (2)

Furthermore, the nuclear instance mask for a specific type x,
represented by Nx, refines the nuclear instance mask N by in-
cluding only the nuclei of type x, i.e., Nx = N ⊙Cx, where ⊙ is
an element-wise product.

The nuclei purity fraction is defined as the ratio of a specific
nuclear type to the total nuclear count within a WSI. Particu-
larly, the nuclei purity fraction of nuclear type x in a WSI can
be calculated as follows:

Fx =
|Nx|+

|N|+
=
|{k | k ∈ Nx, k , 0}|
|{k | k ∈ N, k , 0}|

(3)

where | · |+ indicates the cardinality of a given matrix, i.e., the
unique elements of the matrix, excluding 0. Thus, |N |+ repre-
sents the total number of nuclei in the WSI, and |Nx|+ denotes
the number of nuclei of type x.

Based on the above definitions, the calculation of Fx is
straightforward given known T , N and C. However, in prac-
tice, it is challenging to obtain accurate values of T , N and C,
due to the large-scale nature of WSIs, heterogeneous staining,
morphological variability, overlapping nuclei, and the subjec-
tive nature of manual annotation. To address this, we can use
TRS model to obtain the estimated T , i.e., T̃ , and NuCS model
to attain the estimated N and C, i.e., Ñ and C̃, as shown in
Figure 2. Note that estimating N and C is much more challeng-
ing than estimating T , because nuclei are smaller and harder to
distinguish. Moreover, NuCS is much more time-consuming
than TRS. To further mitigate the computational burden, we
train a TNuD model to capture the density relationship between
the tissue region matrix T̃ and the nuclear matrices Ñ and C̃
with training data, enabling the estimation of N and Nx using
only tissue region information from T̃ in the inference process.

Given a WSI, we can estimate Fx as follows:

F̃x =
|Ñx|+

|Ñ |+
=

∑
y

(
∥T̃y∥0 · αy,Ñ · βy,x · γy,x

)
∑
y

(
∥T̃y∥0 · αy,Ñ · θy,C

) (4)

where ∥·∥0 calculates the zero-norm of a matrix, i.e., the number
of non-zero elements in the given matrix. The parameters αy,Ñ ,
βy,x, γy,x, and θy,C are specific to the TNuD model, character-
izing the spatial distribution and density of nuclei within tissue
regions. They are fitted with T̃y, Ñ, Ñx, and C̃x obtained in the
training data. After training, the parameters are fixed and used
in the inference stage to avoid involving the time-consuming es-
timation of N and Nx. Particularly, these parameters are defined
as follows:

• αy,Ñ quantifies the proportion of tissue area T̃y occupied
by nuclear pixels, providing a measure of overall nuclear
density within a specific tissue region and indicating how
much of the tissue is composed of nuclei:

αy,Ñ =
∥Ñ ⊙ T̃y∥0

∥T̃y∥0
(5)

• βy,x represents the proportion of nuclei pixels within tissue
area T̃y that are of type x. It indicates the relative abun-
dance of a specific nucleus type among all nuclei present
in the tissue region, providing insight into the distribution
of different nuclear types within the tissue.

βy,x =
∥C̃x ⊙ T̃y∥0

∥Ñ ⊙ T̃y∥0
(6)

• γy,x denotes the nuclei density of type x within the tissue
area T̃y. By taking the reciprocal of the average area per
nucleus, i.e., f (C̃x)/p(Ñx), it provides the number of nuclei
per unit area for that specific nucleus type. This metric in-
dicates how densely the nuclei of type x are packed within
the tissue region. A higher value of γy,x implies a greater
concentration of nuclei of that type.

γy,x =
|Ñx ⊙ T̃y|+

∥C̃x ⊙ T̃y∥0
(7)

• θy,C indicates the average number of nuclei per unit nuclear
area within a tissue region. It reflects the nuclear density
within the nuclear regions of the tissue, offering a focused
perspective on cellular distribution and potential changes
in tissue morphology.

θy,C =

∑
x

(
∥Ñx ⊙ T̃y∥0 · γy,x

)
∥Ñ ⊙ T̃y∥0

(8)

According to Eq. (4) and the process outlined in Figure 2,
a specific TNuD model can be built for a given WSI. How-
ever, to accurately predict cell fractions in previously unseen

4

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5292847

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



WSIs during future inference, it is essential to establish a gen-
eral TNuD model to capture typical patterns of nuclear den-
sity, cell type distribution, and tissue architecture across diverse
samples, thereby ensuring broader applicability to a wide range
of WSIs. We can generalize the TNuD model by averaging the
model parameters associated with a series of diverse WSIs:

ᾱy,N =
1
m

m∑
i=1

αi
y,Ñ , (9)

β̄y,x =
1
m

m∑
i=1

βi
y,x, (10)

γ̄y,x =
1
m

m∑
i=1

γi
y,x, (11)

θ̄y,C =
1
m

m∑
i=1

θiy,C (12)

where αi
y,Ñ

, βi
y,x, γi

y,x, and θiy,C denote the corresponding param-
eters obtained in the i-th WSI, and m is the total number of
WSIs. The final F̃x for the nuclei purity fraction estimation of
nuclei type x is then rewritten as:

F̃x =

∑
y

(
∥T̃y∥0 · ᾱy,Ñ · β̄y,x · γ̄y,x

)
∑
y

(
∥T̃y∥0 · ᾱy,Ñ · θ̄y,C

) (13)

As shown in Eq. (13), to calculate the TCF of a cancer type x
in a new WSI, it is only necessary to obtain T̃y via TRS as the
other parameters have already been fitted with training data.

Data Collection and Model Training
The proposed TNuD-based TCF estimation method was

evaluated on real-world WSI datasets shown in Table 3 and
compared with other state-of-the-art TCF estimation tech-
niques. Derived mainly from breast and ovarian cancer speci-
mens and annotated for tissue regions, nuclear details, and TCF
estimates, these datasets were curated to support specific com-
putational pathology tasks such as TRS, NuSC, ROI segmenta-
tion, and TCF estimation.

The BCSS (Breast Cancer Semantic Segmentation,
https://bcsegmentation.grand-challenge.org/)
dataset, sourced from H&E-stained breast cancer images
across 18 institutions from The Cancer Genome Atlas (TCGA),
was used to train the TRS model. We streamlined this
dataset to six super tissue region classes (“Tumor,” “Stroma,”
“Lymphocyte,” “Necrosis,” “Ambiguous,” “Others”) as per
preprocessing protocols detailed in Amgad et al. Amgad et al.
(2019). The dataset was divided into an 8:2 training-test split.
Patches were extracted at 512 × 512 resolution, halved to 256
pixels during cropping. Augmentation techniques including
mean subtraction, random resizing, and horizontal flipping
were used to enhance training diversity. For inference, a sliding
window method ensured uniform patch resolution, minimizing
boundary errors and improving segmentation accuracy.

The NuCLS (Nucleus Classification, Localization, and
Segmentation, https://sites.google.com/view/nucls)

Figure 3: Overview of six different methods to estimate the nuclei proportion
score.

dataset features over 220,000 annotations including nuclear in-
stance masks and type labels. A pathologist-verified subset
(“corrected single rater dataset”) was utilized to train the NuSC
model. Original cell class annotations were grouped into super-
classes -“tumor”, “stromal”, “sTILs”, “others”, “unlabeled.” -
to ensure clinical relevance and balanced training. The dataset
was split in a 7:2:1 ratio for training, validation, and test.

We constructed the Cancer-ROI, Breast-WSIs, and Ovarian-
WSIs datasets from clinical samples of breast and ovarian can-
cer resections to evaluate the TNuD-based TCF estimation.
Slides were scanned into WSIs at 40× magnification, then an-
notated by experienced pathologists to produce tissue region
masks and TCF scores following structured protocols.

The Cancer-ROI dataset includes 10 breast cancer WSIs with
tumor regions of interest (ROI) annotations. We extracted
512 × 512 image patches from 5× magnification images using
a sliding window method with 128-pixel overlap, and divided
them into training, validation, and test sets at a 7:2:1 ratio.

The Breast-WSIs dataset, consisting of 54 breast WSIs,
serves as the reference dataset for evaluating both ROI detec-
tion and TCF estimation. Its combination with the BCSS and
NuCLS datasets was the base for the development of breast
cancer TNuD model. The Ovarian-WSIs dataset, consisting
of 52 ovarian WSIs was used for evaluating the TCF estima-
tion and testing the transferability of the TNuD-based method
across cancer types.

Performance Evaluation Experiment
As shown in Figure 3, we evaluated the performance of

the proposed TNuD-based TCF estimation method against the
pathologist’s manual estimation method and four other TCF es-
timation methods:

• F̃Path : Represents the TCF estimated by pathologists
through visual assessment. This benchmark reference, de-
spite being the clinical standard, is subject to variability
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Table 3: Overview of the datasets used in this study.

Dataset Task #Img Image Size Annotations #Instances #Types

BCSS TRS 151 1222 × 1036 to 7360 × 6813 Multi-type masks 20,340 21

NuCLS NuSC 3,944 287 × 292 to 830 × 765 Multi-type, instance masks 222,396 12

Cancer-ROI Segmentation 20 WSIs Tumor region masks \ 1

Breast-WSIs Prediction 54 WSIs WSI-based TCF scores 54 \

Ovarian-WSIs Prediction 52 WSIs WSI-based TCF scores 52 \

The notation #Img signifies the total number of images or WSIs included in the dataset. #Instances records the total number of tissue region or
nuclei instances contained within the dataset. #Types refers to the number of distinct annotated tissue region or nuclear types represented.

due to factors such as staining inconsistencies and ob-
server fatigue.

• F̃ROI : Represents the TCF estimation calculated as the ra-
tio of the tumor region area to the total tissue area in the
WSI using a ROI-based method, similar to those used by
Oner et al. Oner et al. (2022) The key difference is that
we use a lower magnification (5×) image to capture large-
scale tumor distribution.

• F̃TC: Represents the TCF estimation calculated as the ratio
of tumor patches to all tissue patches within the WSI at
40× magnification using a tile classification (TC)-based
method, similar to those used by Brendel et al. Brendel
et al. (2022) and Fu et al. Fu et al.. The key difference is
that we adopted a supervised approach for training the tile
image classification model, using EfficientNet Tan and Le
(2020).

• F̃NuS C: Represents the TCF estimation calculated as the
ratio of tumor nuclei to total nuclei in the tissue sample
WSI at 40× magnification, with nuclei detected by the
NuSC model within our TNuD-based framework.

• F̃TRS : Represents the TCF estimation calculated as the ra-
tio of the tumor area to the total tissue area in the sample
tissue WSI at 20×magnification, with tissue and tumor re-
gion mask output generated by the TRS model within our
TNuD-based framework.

The objective of the performance evaluation was to assess the
correlation between the predicted TCF values and the ground
truth annotations using several evaluation metrics, including
mean squared error (MSE), Pearson and Spearman correlation
coefficients, and linear regression analysis. It was carried out
on the breast and ovarian datasets respectively. It is impor-
tant to note that the key hyperparameter of the TNuD-based
framework was optimized on breast cancer data. The experi-
ment results with ovarian dataset served as an exploration of
the model’s transferability across different cancer types.

Results

Breast Cancer Results

The performance of the trained TRS and NuSC models were
first examined. Quantitative results for both models are sum-
marized in Table 4. The TRS model achieves high accuracy
across tissue types, while the NuSC model performs well in
nuclear segmentation and yields moderate classification results
(e.g., 0.6707 Dice for tumor nuclei). Figure 4 shows two exam-
ples of the outputs of the TRS and NuSC models at the patch
image-level and WSI-level, respectively. Figure 4 (a) shows
that the TRS model closely approximates the ground truth (GT).
A comparative analysis of the NuSC and TRS results reveals a
strong correlation between tissue regions and their correspond-
ing nuclear types, validating the anticipated consistency in their
spatial distribution. These tissue regions frequently accommo-
date a varied assortment of nuclear types and that nuclear den-
sity within a region typically arises from a blend of multiple nu-
clear types rather than a single type. Furthermore, areas abun-
dant in lymphocyte nuclei often neighbor or intersect tumor re-
gions, potentially causing misclassification of tumor nuclei as
lymphocytes, particularly when nuclear morphology and den-
sity alone are inadequate for precise differentiation.

Observing the WSI-level examples in Figure 4 (b), a high
density of tumor nuclei within the tumor and lymphocytic re-
gions, showing strong concordance with the TRS results and
pathologist annotations. Some slight discrepancies in nuclei
boundary delineations observed were linked to the inherent
complexity and heterogeneity of the tissue structures in the im-
ages, especially in ambiguous areas where tissue types overlap.
These discrepancies may stem from unclear manual annotations
or the models’ limitations in differentiating subtle morphologi-
cal features of the cells.

The TCF estimation performance evaluation results are pre-
sented in Table 5 and Figure 5. The TNuD-based TCF workflow
consistently outperforms all other methods across multiple met-
rics. It achieves the lowest MSE of 0.0214, reflecting minimal
prediction error, and demonstrates the highest Pearson (0.8683)
and Spearman (0.8737) correlations, indicating strong align-
ment with pathologist annotations. Linear regression analysis
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(a) Test on the images.

(b) Test on the WSIs.

Figure 4: Examples of comparison of the outputs of TRS and NuSC models
with pathologist annotations.

Table 4: Performance of TRS and NuSC Models Across Tissue and Nuclear
Classes.

TRS NuSC NC NuSC NP
Acc Dice Dice Acc Dice

Tumor 0.9111 0.8406 0.6707 N/A N/A
Stroma 0.8490 0.8181 0.3882 N/A N/A

Lymphocytic 0.9279 0.7413 0.6313 N/A N/A
Necrosis 0.9780 0.7781 N/A N/A N/A
Others 0.9400 0.6723 0.1440 N/A N/A

Background N/A N/A 0.8846 N/A N/A
Nuclei N/A N/A N/A 0.8527 0.7861

shows a slope of 0.9332 and an intercept of 0.0808, suggest-
ing minimal bias, while the R-value of 0.7540 and low standard
error (0.0769) underscore the method’s precision and explana-
tory power. These findings are further supported by the scatter
plot in Figure 5, where TNuD-based predictions closely cluster
around the line of perfect correlation.

The ROI-based approach, while yielding competitive re-
sults with an MSE of 0.0232, Pearson (0.8315), and Spearman
(0.8246) correlations, does not capture fine-grained nuclear de-
tails. Although it offers the advantage of rapid estimation at low
magnification, this limitation reduces its overall precision com-
pared to the TNuD-based method. The NuSC-based and TC-
based methods exhibit higher MSE values and lower correla-
tion coefficients, indicating greater variability and less reliable
TCF predictions. The NuSC-based method, for instance, has a
correlation coefficient of 0.7549, and its higher MSE suggests
frequent inaccuracies. The TC-based method, with a Pearson

correlation of 0.8113, shows a pronounced overestimation bias,
as reflected in its slope of 1.2440. Both methods, as shown in
Figure 5 (f), demonstrate a tendency to overestimate TCF, lead-
ing to less consistent predictions.

The TRS-based method, although demonstrating reasonable
correlation with pathologist annotations, exhibits greater vari-
ability in its predictions, as indicated by its higher MSE and
the broader spread observed in the scatter plot (Figure 5 (e)).
While it captures general trends in TCF, the TRS-based method
is less reliable in complex tissue regions, where deviations from
pathologist estimates become more pronounced, particularly in
higher TCF values. In comparison, the TNuD-based method
improves upon the TRS-based approach by incorporating tis-
sue region segmentation and tumor nuclear density mapping.
This multi-scale integration enhances the accuracy of predic-
tions, better captures the heterogeneity of tumor tissues, and
addresses the cellular details missing in the TRS method.

In conclusion, the testing results demonstrate that the TNuD-
based approach delivered highly accurate and reliable TCF pre-
dictions, outperforming other methods in error rate, correlation
with pathologist annotations, and predictive power.

Ovarian Cancer Results

The TCF estimation performance evaluation results for the
ovarian dataset are shown in Table 6 and Figure 6. Interestingly,
the TC-based method demonstrates slightly stronger correlation
metrics (Pearson: 0.7630, Spearman: 0.7703) than the TNuD-
based workflow, alongside a very similar MSE (0.0483). How-
ever, the linear regression slope (1.1661) indicates a clear over-
estimation bias, and the relatively low R-value (0.5821) coupled
with a higher standard error (Std Err: 0.1225) suggests notable
variability in predictions. These factors indicate that while the
TC-based model aligns with general trends, it does so with less
consistency, limiting its practical reliability.

The TNuD-based workflow demonstrates robust perfor-
mance on ovarian cancer, with an MSE of 0.0481. Its Pear-
son (0.7599) and Spearman (0.7670) correlations are relatively
strong, though they remain somewhat lower than the high cor-
relations observed previously in breast cancer. Nevertheless,
the TNuD-based method shows important advantages in terms
of consistency and minimal bias, as evidenced by the linear
regression slope (0.9973), intercept (0.0787), higher R-value
(0.5775), and lower standard error (0.1120). These findings
suggest that the TNuD-based model, despite slightly lower cor-
relation metrics, provides more stable and less biased predic-
tions than the TC-based method. Given that the TNuD model
was trained exclusively on breast cancer data, further optimiza-
tion with an ovarian cancer-specific dataset will be required to
fully realize the model’s performance potential.

The ROI-based method demonstrates moderate performance
in ovarian cancer, with an MSE of 0.0482. Its Pearson (0.7257)
and Spearman (0.7207) correlations, along with a regression
slope of 0.9201, indicate that the method can roughly capture
general tumor distribution at low magnification (5×). However,
because it relies on macroscopic tumor segmentation, this ap-
proach may not fully capture fine-grained tumor heterogene-
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Table 5: Comparison of the correlation between the predicted TCF of different estimation methods and pathologists’ annotations on breast cancer.

Model MSE↓ Pearson↑ Spearma↑
Linear

Slope Intercept R-values ↑ Std Err ↓

ROI 0.0232 0.8315 0.8246 1.0317 -0.0068 0.6914 0.0995

TC 0.0696 0.8113 0.8402 1.2440 0.1359 0.6583 0.1294

NuSC 0.0835 0.7549 0.7972 1.0227 0.2206 0.5699 0.1282

TRS 0.0883 0.8090 0.8624 1.0782 0.2305 0.6545 0.1131

TNuD 0.0214 0.8683 0.8737 0.9332 0.0808 0.7540 0.0769

Figure 5: The visualization of the linear regression model between TCF predicted by different methods and pathologists’ annotations on breast cancer.

ity, leading to lower accuracy compared to the TC-based and
TNuD-based approaches, which use higher-resolution images.

The TRS-based method displays similar shortcomings, with
a higher MSE (0.0653) and relatively weaker correlations (Pear-
son: 0.7230, Spearman: 0.7213). Like other breast cancer-
trained models, the performance of the TRS-based method on
ovarian cancer tissue is compromised due to organ-specific dif-
ferences. The suboptimal segmentation of tissue regions in
ovarian cancer slides highlights the challenges of transferring
models trained on one cancer type to another, emphasizing the
need for organ-specific datasets.

Similarly, the NuSC-based method shows the highest MSE
(0.0678) among all evaluated methods, indicating substantial
errors in TCF prediction. Its lower correlation coefficients
(Pearson: 0.6782, Spearman: 0.6778) further highlight its in-
ability to provide reliable and consistent TCF estimates for
ovarian cancer. This performance issue stems from the lack
of NuSC datasets specifically for ovarian cancer. We can con-
clude that the NuSC-based model, trained exclusively on breast
cancer data, struggles to accurately identify cells and classify
their types in ovarian cancer images.

In summary, all evaluated methods were trained exclusively

8

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=5292847

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

w
ed



Table 6: Comparison of the correlation between the predicted TCF of different estimation methods and pathologists’ annotations on ovarian cancer.

Model MSE↓ Pearson↑ Spearma↑
Linear

slope intercept R-values ↑ Std Err ↓

ROI 0.0482 0.7257 0.7207 0.9201 0.0174 0.5266 0.1146

TC 0.0483 0.7630 0.7703 1.1661 -0.0028 0.5821 0.1225

NuSC 0.0678 0.6782 0.6778 0.9856 0.1240 0.4600 0.1402

TRS 0.0653 0.7230 0.7213 1.0655 0.1082 0.5227 0.1337

TNuD 0.0481 0.7599 0.7670 0.9973 0.0787 0.5775 0.1120

Figure 6: The visualization of the linear regression model between TCF predicted by different methods and pathologists’ annotations on ovarian cancer.

on breast cancer data, limiting their predictive accuracy when
applied to ovarian cancer. Among them, the TNuD-based work-
flow shows the most balanced performance, achieving relatively
stable, unbiased predictions. Although the TC-based method
achieves slightly stronger correlation metrics, it suffers from
greater variability. Other methods, including ROI-based, TRS-
based, and NuSC-based, exhibit more pronounced limitations.
Overall, the results highlight the TNuD-based method’s promis-
ing transferability and suggest that further ovarian-specific op-
timization is needed to enhance performance.

Discusion

Experimental results demonstrate that our TNuD-based ap-
proach exhibits superior performance in precision and relia-
bility, with strong alignment to pathologist annotations, con-
firming its suitability for rapid, large-scale tumour-burden as-
sessment in clinical applications. Across two breast-cancer
test cohorts, the workflow reduced the median MSE by 25-
40 % and increased the Pearson correlation by up to 0.08
relative to the best single-scale baseline, while maintaining
minute-level inference time on a single GPU. The model trained
on breast-cancer data also shows promising transferability to
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ovarian-cancer WSIs, suggesting cross-organ robustness.
From a theoretical perspective, our findings confirm

that explicitly coupling macro-scale tissue architecture with
micro-scale nuclear composition yields a synergistic gain
unattainable for region-only or nucleus-only pipelines in our
experiments. The density-matrix formalism introduced herein
provides a principled means to encode spatial priors and can be
extended to other histological attributes, such as stromal sub-
types or immune foci. Compared with ROI-based and TC-
based workflows–both of which misidentify mixed patches as
tumor–we observed a markedly lower over-estimation slope on
breast slides rich in lymphocytic infiltrates. This finding indi-
cates that multi-scale fusion not only aggregates complemen-
tary information but also mitigates scale-specific biases.

Clinically, our method offers pathologists and oncologists
a fast, accurate, and interpretable tool for evaluating tumour
purity. High-confidence TCF scores can be used to triage
low-purity samples before costly genomic assays, to adjust
variant-calling thresholds, or to stratify patients in trials where
tumour purity is a prognostic factor (e.g. HER2-, EGFR-, or
PD-L1-targeted therapies). The framework’s intermediate maps
further support visual audit and facilitate integration into rou-
tine sign-out workflows.

Although the results affirm the clinical promise of the TNuD-
based method, several aspects remain to be strengthened. Even
with a relatively small sample size for breast cancer, our method
produced statistically significant improvements, highlighting
the robustness of its multi-scale integration approach. Never-
theless, the limited dataset size inherently restricts generalis-
ability, and performance could likely be further enhanced with
access to larger, diverse datasets. Furthermore, variability in
imaging quality—including differences in staining protocols,
slide preparation, and scanner settings—may influence perfor-
mance when models are applied across clinical centres. In ad-
dition, full clinical translation will require regulatory approval,
workflow integration, and clinician training, all of which lie be-
yond the present scope. Future research incorporating larger,
more diverse datasets and addressing these practical consider-
ations is needed to further enhance the model’s robustness and
applicability.

In conclusion, this work makes significant progress in ad-
vancing TCF estimation by addressing key limitations related
to speed, accuracy, and interpretability. This comprehensive,
multiscale TNuD-based approach more effectively captures the
heterogeneity of tumor tissues, underscoring the importance of
integrative methods in computational pathology. It offers higher
precision and is therefore well-suited for clinical implementa-
tion where high accuracy is essential. Additionally, it makes
detailed tissue region and nuclear feature information readily
available to pathologists and clinicians, supporting accurate
clinical decision-making. Building on these findings, future
work will explore cross-cancer fine-tuning, multi-centre stain
normalisation, and the fusion of TNuD features with genomic
copy-number profiles or spatial-transcriptomic maps. Prospec-
tive, multi-institutional trials and an interactive visual interface
are also planned to expedite regulatory approval and real-time
adoption in diagnostic practice. Collectively, these efforts will

further strengthen computational pathology and ultimately sup-
port more accurate cancer diagnosis and treatment decisions.
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